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Osmotic pressure and viscoelastic shear moduli of concentrated emulsions
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We present an experimental study of the frequencyv dependence and volume fractionw dependence of the
complex shear modulusG* (v,w) of monodisperse emulsions which have been concentrated by an osmotic
pressureP. At a givenw, the elastic storage modulusG8(v)5Re@G* (v)# exhibits a low-frequency plateau
Gp8 , dominating the dissipative loss modulusG9(v)5Im@G* (v)# which exhibits a minimum. Above a critical
packing fractionwc , we find that bothP~w! and Gp8(w) increase quasilinearly, scaling as (w2wc)

m, where
wc'wc

rcp, the volume fraction of a random close packing of spheres, andm is an exponent close to unity. To
explain this result, we develop a model of disordered droplets which interact through an effective repulsive
anharmonic potential, based on results obtained for a compressed droplet. A simulation based on this model
yields a calculated static shear modulusG and osmotic pressureP that are in excellent agreement with the
experimental values ofGp8 andP. @S1063-651X~97!15008-5#

PACS number~s!: 82.70.Kj, 81.40.Jj, 62.20.Dc
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I. INTRODUCTION

An emulsion is an immiscible mixture of two fluids, on
of which is dispersed in the continuous phase of the oth
typically made by rupturing droplets down to colloidal siz
through mixing. To inhibit recombination, or coalescence
surfactant which concentrates at the interfaces must be a
to create a short-ranged interfacial repulsion between
droplets@1,2#. For an appropriate surfactant, a quantity mu
less than the mass of the liquids is often sufficient to m
this interfacial repulsion strong enough to render the em
sion kinetically stable against coalescence and demixing
many years. This kinetic stability differentiates emulsio
from thermodynamically stable microemulsions which fo
spontaneously without mixing when the proper proportio
of certain fluids and surfactants are placed in contact.

Despite being comprised solely of fluids, emulsions co
sisting of highly concentrated droplets can possess a stri
shear rigidity that is characteristic of a solid. The nature
this elasticity is unusual; it exists only because the repuls
droplets have been compressed by an external osmotic
sureP, and thus concentrated to a sufficiently large drop
volume fractionw, which permits the storage of interfacia
elastic shear energy. For instance, ifP~w! approaches the
characteristic Laplace pressure required to deform the d
lets (2s/R), wheres is the interfacial tension andR is the
undeformed droplet radius, the droplets pack together
deform, creating flat facets where neighboring dropl
touch. As the osmotic pressure is raised even further,w tends
toward unity, and the emulsion resembles a biliquid foa
Provided the droplets are compressed by an osmotic p
sure, additional energy can be stored by imposing shear
formations which create additional droplet surface area;
gives rise to the emulsion’s elastic modulus. However, i
concentrated emulsion is diluted, so that the osmotic pres
drops well below the Laplace scale, the resulting emulsion
561063-651X/97/56~3!/3150~17!/$10.00
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unpacked spherical droplets loses it shear rigidity and
dominantly viscous, like the suspending fluid. Thus em
sions are versatile materials whose rheological properties
range from viscous to elastic depending on the applied
motic pressure, and thereforew. It is precisely this broad
range of rheological behavior that gives rise to many te
nological applications; low viscosity oils can be made effe
tively rigid if emulsified in water and osmotically com
pressed to high volume fractions, while high viscosity o
can be made to flow more readily if emulsified at dilu
volume fractions in water.

Emulsions possess microscopic mechanisms for both e
tic energy storage and viscous dissipation. They are
coelastic, exhibiting a stress response to a dynamically
plied shear strain that is partially liquidlike and partial
solidlike. The energy storage and dissipation per unit volu
can be represented by the frequency-dependent complex
coelastic shear modulusG* (v,w), which is defined only for
perturbative shears in which the stress and strain are line
proportional@3,4#. The real partG8(v)5Re@G* (v)#, or stor-
age modulus, is the in-phase ratio of the stress with res
to an oscillatory strain, and reflects elastic mechanis
whereas the imaginary partG9(v)5Im@G* (v)#, or loss
modulus, is the out-of-phase ratio of the stress with resp
to the strain and reflects dissipative mechanisms. Linea
and causality imply thatG8(v) and G9(v) are interrelated
by the Kramers-Kronig relations@3–5# indicating their inher-
ent link to the dissipation of shear stress and strain fluct
tions in an emulsion. UnderstandingG* (v,w) for well-
controlled emulsions over a wide range ofw would provide
valuable insight into the importance of the elastic and dis
pative mechanisms as the droplets become packed and
formed.

In this paper, we present experimental measurement
the osmotic pressure and complex shear modulus of mo
disperse emulsions compressed to different volume fractio
3150 © 1997 The American Physical Society
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56 3151OSMOTIC PRESSURE AND VISCOELASTIC SHEAR . . .
By using well-controlled emulsions consisting of droplets
a single size@6,7#, our approach offers several advantag
over previous rheological experiments@8,9,19# which were
made using emulsions having a broad distribution of drop
sizes. Indeed, polydisperse emulsions are difficult to st
because they contain droplets with many different Lapl
pressures so that, at a fixed osmotic pressure, the large d
lets may deform significantly while the small droplets rema
essentially undeformed. Moreover, the droplet packing
deformation cannot be easily connected tow because smal
droplets can fit into the interstices of larger packed dropl
By contrast, using monodisperse emulsions eliminates th
inherent difficulties: all the droplets have the same Lapl
pressure. Moreover, the volume fraction can be simply
lated to the packing of identical spheres, thus allowing
meaningful comparisons with theoretical predictions wh
have usually assumed that the emulsion is monodisperse
ordered.

The earliest calculations ofP~w! andG(w) for emulsions
and foams@11–17# are based on perfectly ordered crystals
droplets. In such systems at a given volume fraction a
applied shear strain, all droplets are compressed equally
deform affinely under the shear; thus all droplets have
actly the same shape. Describing the dependence ofP and
G on w then reduces to the ‘‘simpler’’ problem of solving fo
the interfacial shape of a single droplet within a unit ce
Nevertheless, calculating the exact shape and area of su
single droplet at allw.wc is a very difficult free-boundary
problem that can only be solved analytically for simple ca
@16#, or numerically@16,17#. Real emulsions, however, ex
hibit a disordered droplet structure, and a comparison of
perimental results to these theoretical predictions is inap
priate. In particular, the comparison of thew dependence o
the low-frequency plateau value of the storage modulus
disordered, monodisperse emulsions to the static s
modulus predicted by these studies has demonstrated th
istence of significant discrepancies@18#.

The origin of the elasticity of an emulsion arises from t
packing of the droplets; forces act upon each droplet du
its neighboring droplets pushing on it to withstand the
motic pressure. However, all these forces must balanc
maintain mechanical equilibrium. Calculations of the elas
properties of such disordered packings are complicated
the many different droplet shapes and the necessity of m
taining mechanical equilibrium as the droplets press aga
one another in differing amounts. While a general theory
the elasticity of disordered packings may ultimately lead t
precise analytical description of emulsion elasticity, co
puter simulations including adequate interdroplet interacti
and accounting for the complexity associated with disor
can provide insight into the origins of thew-dependent shea
modulus. In order to understand the effects introduced
disorder, we developed a model for compressed emuls
which includes a disordered structure as well as reali
droplet deformations@10#. In this model, we formulate an
anharmonic potential for the repulsion between the pac
droplets, based on numerical results obtained for individ
droplets when confined within regular cells@16#. Numerical
results for the osmotic pressureP and the static shear modu
lus G obtained from this model are in excellent agreem
with our experimental values ofP and the elasticity, as ca
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be shown from Fig. 1. We measure the frequency depen
storage modulusG8(w,w), and take the low-frequency pla
teau valuesGp8(w) as the static shear modulusG(w). Our
model of emulsions as disordered packings of repulsive
ments is very general, and may also be applicable to o
materials which become elastic under an applied osm
compression, provided the potential between the elemen
appropriately modified.

The structure of this paper is as follows. In Sec. II, w
review the theoretical predictions for the osmotic press
and shear rheology of emulsions. In Sec. III, the experim
tal aspects of this study are described; Sec. III A descri
the emulsion preparation and the rheological measurem
techniques; Sec. III B presents the results of our meas
ments; and Sec. III C compares our experimental obse
tions to existing predictions and previous measurements
order to understand the difference found between our res
and the predictions existing for ordered arrays of droplets
Sec. IV we present the results of numerical studies base
a model that can account for disorder. In Sec. IV A, we d
scribe the details and the motivation of the model, while,
Sect. IV B we present and discuss the simulation results
brief conclusion closes the paper.

II. THEORY

In order to understand the properties of packings of
formable spheres, it is useful first to review the packing
static, solid spheres. Their packing determines the crit
volume fractionwc at which the onset of droplet deformatio
occurs and the coordination numberzc of nearest neighbors
touching a given droplet. The highest volume fraction
monodisperse hard spheres is attained for ordered crysta
structures, including face-centered-cubic~fcc! and hexagonal
close packing~hcp!. These havewc

cp5p&/6'0.74 and
zc

cp512. By randomly varying the stacking order of th
planes, a random hexagonally close-packed~rhcp! structure
can be made, but this does not alter eitherwc or zc . Other
ordered packings are less dense. For example, the b
centered-cubic~bcc! packing haswc

bcc5p)/8'0.68 and
zc

bcc58, while the simple cubic ~sc! packing has

FIG. 1. The scaled shear modulus and osmotic pressure
function of w. The computed scaled static shear modu
G/(s/R) ~1! and osmotic pressureP/(s/R) ~line!, as obtained
from the model presented in Sec. IV B 2, are compared with
experimental values ofGp8(weff) ~j! andP(weff) ~s!.
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3152 56T. G. MASON et al.
wc
sc5p/6'0.52 andzc

sc56. The strict definition of a packing
excludes conditions of mechanical stability. However, un
an interdroplet potential that is purely repulsive and sph
cally symmetric as the one found in emulsions, both bcc
sc are unstable against weak random mechanical agitati

By contrast to ordered packings, mechanically stable
ordered packings occur at significantly lower volume fra
tions. By shaking loosely packed macroscopic ball beari
@20#, or through entropically driven Brownian motion fo
colloidal-sized particles, the packing density can be
creased up to a reproducible limit termed random close pa
ing ~rcp! for which wc

rcp'0.64 @21# ~conjectured to be 2/p
@22#! and at an average coordination numberz̄c

rcp'6 @10#.
From experimental observation, this is the highest volu
fraction at which disordered monodisperse hard spheres
be packed.

While increasing the volume fraction of a dilute colloid
system towardw rcp, the packing of spheres undergoes
ergodic to nonergodic transition, or a colloidal glass tran
tion, at a valuewg well beloww rcp. Abovewg , every sphere
is confined into a local region by the cage formed by
neighbors; however, there remains some degree of l
translational free volume within its cage. Despite this m
tion, the global configuration remains locked into a glas
structure, since the probability for a sphere to diffuse out
its cage over a reasonable time scale is essentially zero
low wg , the system exhibits an ergodic behavior. The coll
dal glass transition is well-described by mode-coupl
theory ~MCT!, which assumes that the vibrational modes
the glassy structure at different wave vectors are inhere
coupled@23#; it predicts thatwg'0.58. Light-scattering mea
surements@24# and mechanical rheological measureme
@25# of disordered colloidal hard-sphere suspensions sup
this prediction forwg .

The behavior of an emulsion forw,wc is expected to be
reminiscent of that of hard spheres; any elastic behavio
entropic in nature@25#. We emphasize, however, that th
magnitude of this entropic elasticity is significantly low
than that controlled by surface tension, sincekBT!sR2;
nevertheless, belowwc it is measurable. As the volume frac
tion is increased further, one eventually reaches a volu
fraction at which the droplets can no longer pack witho
deforming; for a disordered monodisperse emulsion, this
curs initially at w;wc

rcp. Since the interactions betwee
emulsion droplets are purely repulsive, work must be do
against surface tension to compress and deform the drop
This work is done through the application of an osmo
pressure and the resulting excess surface area of the dro
determines the equilibrium elastic energy stored at a fi
osmotic pressure. The additional excess surface area cre
by a perturbative shear deformation determines the s
shear modulusG(w). Thus the elasticity and the osmot
pressure are both controlled by the surface tension of
droplets, or their Laplace pressure. AlthoughP and G rep-
resent fundamentally different properties, they both dep
on the degree of droplet deformation and thereforew. In
principle, both can be determined if all the droplet shapes
known. These shapes depend upon the overall positi
structure, or packing, of the droplets as they press aga
their neighbors in mechanical equilibrium, and also upon
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detailed geometries of the individual contacts.
For an emulsion of oil in water stabilized by an ion

surfactant, each interdroplet contact is in reality a charg
system of interfaces oil-surfactant-water-surfactant-oil, m
ing the contact purely repulsive and thus stable against c
lescence. The presence of a thin water layer between in
acting droplets exists at all volume fractions, includingw
near unity. The screened double-layer repulsion ha
strength determined by the surface potential and a ra
characterized by the Debye lengthlD @26#. These depend on
the interfacial concentration of the surfactant, the bulk io
concentration in the aqueous continuous phase, and the
perature. Two droplets forced together will begin to defo
before their interfaces actually touch due to the electrost
repulsion; the droplet system minimizes its total free ene
by reducing the energy due to electrostatic repulsion at
expense of creating some additional surface area by defo
ing the droplet interfaces. Thus, the droplets have an ef
tive radius larger than their actual size, and consequen
they deform forw belowwc @27,28#. This electrostatic repul-
sion can be accounted for by using an effective volume fr
tion which incorporates a first-order correction for the fil
thicknessh,

weff'w@113/2~h/R!#, ~1!

for h!R @27#; this weff represents the actual phase volum
fraction of packing, allowing us to account exclusively f
the effects of the packing. Although this approximation a
sumes that the droplets are spherical, it is valid to with
10% even for nearly polyhedral droplets nearw'1 @29#.

A. Osmotic pressure

Just as the structure and interactions between atoms
termine the pressure-volume equation of state for homo
neous solids, the structure and interactions~deformability!
between droplets determines the osmotic equation of s
P~w! of dispersions of droplets. The osmotic equation
state for emulsions governs the~osmotic! compression of the
droplets at fixed total droplet volume, allowing the free e
change of solvent with a reservoir@30#. As the droplets are
compressed by the osmotic pressure, their total surface
A(w) increases above that of the undeformed dropletsAo ,
which is, for example, 4pNR2 for a monodisperse collection
of N droplets of undeformed radiusR. For any monodisperse
emulsion ind dimensions, the osmotic pressure is obtain
from

P~w!/~s/R!5dw2
]

]w FA~w!

Ao
G . ~2!

In this equation and what follows, we assume that the surf
tension is constant. Belowwc , the droplets are not com
pressed, soA(w) is constant (A5Ao) and any surface ten
sion contribution toP vanishes~an entropic contribution re-
mains!. By contrast, when the droplets are compressed ab
wc , their surface area increases as they press against n
boring droplets and deform, andP increases.

The droplet response to compression has three chara
istic regimes in three dimensions@16#. First, when the drop-
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lets are infinitesimally deformed, the interaction energyU
between two droplets resulting from the increase of surf
area is@13,16#

U~ f !/~sAo!;S f R

sAo
D 2Fa2 lnS f R

sAo
D G , ~3!

where f is the interdroplet force anda is a dimensionless
constant. The range of validity of this expression is rat
narrow, just after contact, and this behavior is signific
only at the onset of the response of ordered emulsions
terms of interdroplet distance, to first order, this potential c
be shown@10# to be equivalent toU(j);2j2/lnj.

The second regime of the droplet elastic response sp
the much broader range of deformation that follows conta
and is therefore the most important when considering
response of real~disordered! emulsions. In this regime, th
response of the droplets isanharmonic, with a behavior that
can be approximated by a power law, where the power
pends on the coordination number@10,16#. The anharmonic-
ity of the potential has profound consequences on the de
mations: even under a uniform compression, it implies t
there are nonaffine particle displacements. To illustrate t
consider adisorderedsystem of monodisperse spherical o
jects interacting with repulsive forces only, and compress
system uniformly at somew.wc

rcp. If the system is in me-
chanical equilibrium, any dropleti with zi neighbors will
have zi forces f i j , j 51, . . . ,zi acting on it and such tha
( j f i j 50. Now increase the compression uniformly, whi
amounts to reducing the interdroplet distancesr i j between
centers of dropleti and j by a constant factorl,1, as pic-
tured in Fig. 2. For a Hookian force,f i j (lr i j )5lf i j (r i j ), and
thus mechanical equilibrium remains after the transform
tion. For any other force, the droplet must move in differe
amounts so as to achieve a new equilibrium state. Thus, e
for a relatively benign case of uniform compression, a n
harmonic force will lead to nonaffine motion of the constit
ent particles. Here we implicitly assumed that the numbe
contacts before and after compression is the same, an
sumption that is clearly not true for a disordered syste
Thus systems with a Hookian interdroplet potential are v

FIG. 2. Schematic representation of a uniform compression
disordered cluster of droplets. In the initial state~a!, the droplets are
compressed tow.wc and are in mechanical equilibrium~surround-
ing droplets are not shown!. The overlap of the circles is meant t
indicate the degree of compression schematically, and the ce
force between each pair of droplets is some function of the over
In ~b!, the compression has been increased uniformly. Only fo
Hookian force will the cluster remain in mechanical equilibrium
e
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likely not to respond affinely, since the creation of any ne
contact will change the conditions for local mechanical eq
librium.

This anharmonic region is followed by a third regime,
which the droplet response to compression sharply rises,
to volume conservation effects. This is the regime near
biliquid foam limit where w→1, so that most of the
continuous-phase liquid has been extracted; there only
mains thin veins for which the radii of curvature of the fre
surfaces are very small, reflecting large Laplace press
@19#.

To capture the essential predictions for the osmotic eq
tion of state of an ordered emulsion, we first consider
response of an array of droplets to a uniform compress
near contact, i.e., atw*wc . For this purpose, we introduce
dimensionless displacementj defined by

j512~wc /w!1/d. ~4!

For an ordered array ind dimensions uniformly compresse
at w.wc , j is the dimensionless ratio of the perpendicu
displacement of the facet toward the droplet center to
undeformed radiusR. To obtain a rough estimate ofP~w!,
we make the following assumptions: the compression is
sumed to be affine and the logarithmic term of Eq.~3! is
ignored. Thus, forw*wc , (w2wc);j, and hence the en
ergy can be approximated byU(w)/(sAo);(w2wc)

2, re-
flecting a Hookian spring force,f /(sR);j. Using Eq.~2!,
one finds that the osmotic pressure in the weak compres
limit is

P~w!/~s/R!5Bw2~w2wc!, ~5!

where both constantsB and wc depend on the geometry o
the droplet packing. Sincew2 varies little in the vicinity of
wc , the dominant scaling ofP is linear with respect to the
difference ofw above packing.

Since the derivation of Eq.~5! relies on the assumption
of affinity and harmonicity, which are true for two
dimensional~2D! systems but are false for real~3D! disor-
dered emulsions, it is not surprising to realize the similar
between this linear scaling form and that of Princen@11,12#
who derived it for an ordered 2D monodisperse system
deformable circles of constant area. When the logarithm
corrections are included in the derivation ofP~w! for 3D
systems@13#, the linear form of Eq.~5! is still dominant.

Equation~3! is only valid at infinitesimal compression;
is thus appropriate to consider a more representative in
droplet potential. In fact, Eq.~5! can be shown to be a speci
case of a more general approach~see the Appendix!: if the
response of the droplets is assumed to be a power
U(j);@(12j)2321#a @16#, then the osmotic pressur
obeys

P~w!/~s/R!;w2~w2wc!
a21. ~6!

Sincea*2 for real droplets moderately compressed by
neighbors, Eq.~5! is somewhat recovered.

B. Static shear modulus

Similarly to the osmotic pressure, the static shear modu
G(w) is determined by the additional deformation of th
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droplets away from their equilibrium shapes due to a per
bative static strain@31#. Princen@11# analyzed an ordered
~monodisperse! 2D array of deformable circles and showe
that G50 for w,wc , and then discontinuously jumps t
nearly the Laplace pressure atwc , reflecting the elasticity of
the circles themselves. The existence of an exact solutio
two dimensions is possible because the droplet surface~more
exactly the perimeter! is parametrized by only one radius o
curvature, and therefore the minimum free surface is alw
an arc of a circle. Three-dimensional problems are m
more elaborate. However, using the potential of Eq.~3! and
uniaxially straining an emulsion with a sc packing, Buz
and Cates predicted a sharp but continuous rise of
uniaxial static shear modulusG(w) at wc @14#. This behavior
arises because of the logarithmic divergence in the dro
response at small compression: as two droplets begin
touch (j50), the effective spring constantf /j increases
continuously but very sharply~divergent derivative! from
zero to a finite value. As a result, the static shear modu
G of orderedemulsions does not exhibit a discontinuity
wc , as it would for a harmonic potential, but rather show
very sharp but continuous rise@14,16#. It is not clear how-
ever, that the characteristic onset@cf. Eq. ~3!# of the force at
infinitesimal compression is determinant in thew dependence
of the static shear modulus fordisordered emulsions at
w.wc . Indeed, while a quasilinear scaling ofP similar to
Eq. ~5! was measured experimentally for polydisperse~dis-
ordered! emulsions @19# ~for which it was assumed tha
wc'0.71!, as well as for monodisperse emulsions@18# ~for
which wc'wc

rcp!, no sharp rise inG(w) was observed; rather
for both cases, a smooth increase ofG(w) was observed a
the samewc @8,18#.

At this point, we have the following picture: the theore
ical predictions for the static shear modulus ofordered
monodisperse emulsions are thatG(w) should exhibit a
sharp rise~most likely continuous! at wc and then continue to
increase withd2G/dw2&0; by contrast, existing experimen
tal data fordisorderedmonodisperse emulsions@18#, which
are displayed in Fig. 1, show that the static shear modu
G(w) increases smoothly atwc „with (dG/dw)uwc

'0…, fol-
lowed by a region of slight positive curvatur
(d2G/dw2.0).

To reconcile this difference, the effect of disorder and
interdroplet potential must be taken into account. The beh
ior of G(w) near wc has been investigated in simulation
which unfortunately have been restricted to two dimensio
with disorder introduced through polydispersity@32–35#.
These simulations find a jump of the static shear modulu
wc and a negative second derivative. We shall investig
these issues in more detail below.

Under strong compression, for whichw'1 and the highly
deformed droplets are nearly polyhedral, the use of the
deformed droplet radius to characterize the Laplace pres
is inadequate. Instead, the Laplace pressure must be obt
from the curvatures at a point on the nonspherical dro
free interface, i.e.,s(R1

211R2
21), where theRi ’s represent

the local radii of curvature. One or both these radii can
come vanishingly small at the free edges and Plateau bor
@7#. This implies that the osmotic pressure needed to rem
all the water to create perfectly polyhedral droplets w
r-
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sharp edges becomes very large, and that the slope o
surface areaA(w) diverges asw approaches unity, regardles
of the emulsion’s packing structure. For 2D systems, for
ample, the osmotic pressure is expected to diverge
P(w)/(s/R);(12w)21/2 @12,34#. By contrast, the static
shear modulus clearly does not diverge in the same lim
Assuming that the emulsion can be treated as a biliq
foam, two conditions for mechanical equilibrium must b
imposed, namely, that the films meet at equal angles of 1
and that only four edges can meet at equal tetrahedral an
For a random 3D isotropic system of flat interfaces, theo
ical work suggests thatG(1)/(s/R)'0.55 at w'1 @36#.
Princen’s measurements@8,19# of polydisperse emulsions
qualitatively support these predictions; he reported a div
gence ofP andG(1)/(s/R)'0.5.

C. Viscoelastic response

While much attention has been given to the static sh
modulus, emulsions are in fact viscoelastic. Thus the sh
modulus is in reality a function of frequency. Moreover,
addition to a storage, or elastic modulus, they also posse
loss, or viscous modulus. The loss modulus is typically s
nificantly less than the storage modulus for most compres
emulsions, and, as such, has received relatively little at
tion. The effective viscosityheff of a highly compressed
emulsion under low frequency shear of infinitesimal amp
tude was predicted by Buzza, Lu, and Cates@15#. Within this
theory, the contribution to the viscosity due to capillary flo
of the water through the thin films between the droplets
(R/h)hw , wherehw is the water viscosity, and the contribu
tion from the surface dilational viscosity of the surfacta
monolayerkB , as more surface area is created, iskB /R:

heff5hw

R

h
1

kB

R
. ~7!

Using kB'1022 P cm, this suggests that the dilational co
tribution dominates withheff'104hw for micrometer-sized
droplets withh*1 nm. Regardless of the dissipative mech
nism or packing structure, this theory implies that the lo
frequency behavior of the loss modulus for concentra
emulsions varies linearly with frequency asG9(v);heffv.
However, the magnitude of the prefactor predicted theor
cally is significantly smaller than that measured experim
tally. A possible origin for this anomalous viscous loss f
disordered concentrated emulsions was suggested by
et al. @37#. Their approach allowed for some local, random
distributed weak regions~faults! within the packing having a
zero shear modulus in one plane. By averaging over the
dom orientations of these planes, an anomalously large c
tribution to the loss modulus was found, with an unusu
frequency dependence,G9(v);v1/2. Due to the Kramers-
Kronig relations, a similar power law must contribute
G8(v). Both contributions were observed using a ligh
scattering technique for measuring the high-frequency
coelastic moduli of emulsions@38#.

At volume fractions well belowwc , emulsion droplets
can deform only slightly during momentary collisions wi
neighbors as they undergo Brownian motion. Thus, at th
volume fractions, an emulsion’s osmotic pressure and rh
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logical properties should resemble those of hard-sphere
pensions. Since the free volume available for translationVf
of each sphere vanishes asw→wc , the entropic energy den
sity, proportional to kBT/Vf , should diverge for hard
spheres. This sets the scale forP~w! and G8(v,w), which
should also diverge for hard spheres. For emulsions h
ever, a divergence atwc is precluded by the possibility o
deformation of the droplets. Such entropic contributions a
ing from the effects of excluded volume have not been
corporated into previous theories ofP and G8 for concen-
trated emulsions of colloidal droplets. Instead, these theo
have assumed that the droplets are sufficiently large that
tropic contributions to the free energy can be neglected, fo
ing P andG8 to be zero belowwc and purely interfacial in
origin abovewc . A complete theory for the viscoelasticity o
emulsions must account for the crossover from the entr
cally dominated regime belowwc to the interfacially domi-
nated regime abovewc .

To address this behavior at a heuristic level, a model
G8(v,w) andG9(v,w) for concentrated emulsions nearwc
has been proposed@25#, by analogy with a similar model fo
concentrated suspensions of hard spheres near the coll
glass transition. As with hard spheres, we assume that e
sion droplets form a colloidal glass when concentrated to
glass transition volume fractionwg , although we allow for
the possibility that the deformability of the droplets m
slightly alter the observed value ofwg compared to that of
hard spheres. Belowwg , on the liquid side of the glass tran
sition, MCT makes quantitative predictions for th
asymptotic behavior of the temporal~droplet! density auto-
correlation function which exhibits theb-relaxation plateau
@39#. A universal feature of MCT belowwg is that the auto-
correlation function of any microscopic variable coupled
density fluctuations has the same generic form in
b-relaxation regime, and, therefore, the form for the str
autocorrelation function is predicted to be the same@23#. The
glassy contribution to the viscoelastic moduli at low freque
cies can be obtained by Fourier transforming the stress a
correlation function into the frequency domain, while r
specting the Kramers-Kronig relations; the magnitude
G* (v,w) is set by the thermodynamic derivative of th
stress with respect to strain. Belowwg , the generic MCT
form for the density autocorrelation function leads to a f
quency plateau inG8(v,w) which reflects entirely entropic
energy storage, and a frequency minimum inG9(v,w),
which reflects rearrangements of the spheres at lowv and
internal cage motion at highv. Above wg , the frequency
plateau inG8(v,w) persists, but the rise inG9(v,w) toward
low v disappears as the structural frustration associated
nonergodicity prevents colloidal relaxations of the ha
spheres. At higher frequencies, contributions to bothG8 and
G9 proportional tov1/2 arise from a diffusional boundar
layer between the spheres@40,41#, and thew-dependent sol-
vent viscosity@42# contribution toG8 proportional tov. The
rheological model superposes the low-frequency MCT a
high-frequency contributions to the moduli; this implicit
assumes a wide separation of time scales between eac
these processes. This model has provided a successful
pretation of the measured frequency dependencies of the
coelastic moduli for hard spheres, which include a platea
G8(v) and minimum inG9(v) @25#, and it may also serve
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as a basis for understanding the moduli of emulsions w
the droplets are not strongly compressed.

III. EXPERIMENT

A. Methodology

To make model monodisperse emulsions suitable for
study, crude polydisperse emulsions of polydimethylsiloxa
~PDMS! silicone oil droplets in water are fractionated usin
a procedure based on a droplet-size-dependent depletio
traction @6#. The surfactant is sodium dodecylsulfate~SDS!
at a concentration ofC510 mM , only slightly above the
critical micelle concentration, making micelle-induce
depletion attractions negligible@6#, yet sufficiently large to
guarantee good interfacial stability@43#. Our own observa-
tions with optical microscopy have confirmed that the dro
lets are stable against coalescence at allw studied. We have
measured the surface tension of the SDS solution in con
with silicone oil and finds59.8 dyn/cm using a duNouy
ring method. Our emulsions have a polydispersity that
been measured to be about 10% of the radius using an
dependent dynamic light scattering from a dilute emuls
@7#. Light-scattering measurements of the angle-depend
intensity from concentrated emulsions withw.0.6 confirm
that the droplet structure factor resembles that of a dis
dered glass; at lowerw, a liquidlike structure has been ob
served@7#. All measurements have been made at room te
perature.

We determine the osmotic equation of stateP~w!, for an
emulsion havingR50.48mm by first setting the osmotic
pressure to concentrate a dilute emulsion, waiting for equ
bration ofw, and then measuringw by weighing the emulsion
before and after the water has been evaporated. To seP
over a large dynamic range, we use three different techniq
in order of decreasing compression: polymer dialysis
which a hydrophilic polymer withdraws water from betwee
the droplets thereby deforming them; centrifugation in wh
the density difference between the oil and water in the pr
ence of an effective gravity is used to concentrate an initia
uniform dispersion of droplets into a cream; and simp
creaming in the much lower gravitational field of the eart

In the polymer dialysis technique@44#, a dilute emulsion
is enclosed in a semipermeable cellulose bag and imme
in a reservoir of strongly hydrophilic dextran solution havin
a known osmotic pressure that increases with polymer c
tent. The cellulose bag has a pore size which is much sma
than the droplet radii and radii of gyration of the polymer,
only water and SDS can be freely exchanged between
polymer solution and the emulsion. To prevent destabili
tion of the droplet interfaces by a loss of SDS from t
emulsion, the SDS concentration in the polymer solution
also fixed at 10 mM . The polymer’s affinity for water drives
water out of the emulsion, thereby raisingw. The measured
volume fraction remains constant after two weeks of equ
bration; this implies that the emulsion’sP has been set to
that of the polymer solution. We repeat this procedure
several different polymer concentrations to apply differe
P.

Due to imprecision of the dialysis calibration fo
P,104 dyn/cm2, we use centrifugation at different spee
to set P at these lower values. We centrifuge a know
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amount of dilute emulsion, and then determinew by skim-
ming a small amount of the creamed emulsion off the top
the column and evaporating the water. After creaming, if
the droplets occupy a distance much less than that of
centrifuge’s lever arm, the spatial gradient in the accelera
g can be neglected, and the osmotic pressure at the top
be determined:P5l Drgw i , wherel is the column height,
w i is the initial volume fraction before centrifugation, andDr
is the density mismatch between the oil droplets and wa
This maximum osmotic pressure reflects the buoyant st
of all droplets below the exposed layer, independent of
spatial gradient inw, since the total volume of droplets i
known. For largeP, equilibration ofw typically takes severa
hours to one day. As the speed of the centrifuge is lowere
obtain very smallP, the equilibration time becomes man
days, making centrifugation impractical. Thus, to achieve
lowest P, we have allowed an emulsion to cream in t
earth’s gravity, and after an equilibration time of half a ye
we have measuredw of the skimmed cream.

To investigate the dependence of the linear viscoela
moduli on the droplet size, we measureG8(v) and G9(v)
for four silicone oil-in-water emulsions having radii ofR
50.25, 0.37, 0.53, and 0.74mm using a mechanica
controlled-strain rheometer@45#. To set C and w simulta-
neously, we first wash the purified emulsion with a SD
solution atC510 mM , and then we concentrate it to near
w'1 by centrifugation. This highestw is measured by
evaporation of a sample removed from this reservoir. Low
w are set by diluting samples with a 10-mM SDS solution to
the total volume required by the rheometer geometry.
emulsions have been made with PDMS~viscosity ho
512 cP!, except for the emulsion withR50.53mm made
with polyphenylmethylsiloxane~PPMS,ho5235 cP!.

In order to measureG* (v,w) at high volume fractions,
we employ a cone and plate geometry, while forw<0.60,
we use a double-wall Couette geometry with a larger surf
area to increase the rheometer’s stress sensitivity. Vigo
preshearing along an applied strain can reduce the meas
stress as a result of emulsion fracturing, especially at higw.
Thus our measurements are performed directly after load
the sample. During loading, all emulsions are necessa
presheared perpendicular to the direction of the azimuth
applied strain as the two rheometer surfaces are moved
position; this preshear is radial for the cone and plate ge
etry, and axial for the double wall Couette geometry.
motor actuates a sinusoidal strain of amplitudeg at a fre-
quencyv, and the magnitude of the stresst~v!, as well as
its phase lag relative to the straind~v!, are detected by
a torque transducer. In the linear regime at small strains,
stress is also sinusoidal, and the storage modulus isG8(v)
5@t(v)cos„d(v)…#/g, while the loss modulus is
G9(v)5@t(v)sin„d(v)…#/g @3#. By measuring the modul
of an emulsion using both geometries, we verified that
results are reproducible and independent of the geome
We enclose the emulsion with a water-filled vapor trap
prevent any evaporation that may changew; this can cause
the elasticity of the emulsion to initially grow with time as
develops a skin layer having higherw. Standing waves in the
gap of either geometry are negligible over the range of
quencies and elasticities we probe.
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Some previous measurements of the elastic moduli
emulsions employed a geometry in which slip was purpos
induced at the walls of the cell, necessitating a complex c
rection for its effects to ensure that the proper moduli w
determined@8,9#. We follow a different procedure, and en
sure that no slip whatsoever occurs along the rheom
walls. We roughen the metal walls of the cells to a leng
scale somewhat larger than the droplet diameter; this el
nates wall slip@46#. We sandblasted the cone and plate, c
ating a roughness depth ranging from about 5 to 500mm,
larger than the micrometer-sized droplets. We verified t
the measuredG8(v) and G9(v) are the same for large
roughnesses introduced by milling regular grooves of 1
mm or 1 mm in the surfaces. The absence of slip has a
been confirmed by varying the gap between the surfaces,
verifying that the measured moduli do not depend on the
thickness.

B. Experimental results

The osmotic equation of state for an emulsion w
R50.48mm measured using polymer dialysis~open circles!,
centrifugation ~solid circles!, and ordinary creaming~dia-
monds! is shown in Fig. 3. Nearweff'0.6'wc

rcp, the osmotic
pressure rises sharply, by several orders of magnitude
though the exact nature of this rise is obscured by exp
mental uncertainty in the measurement ofw, which is accu-
rate to approximately 2%. Good agreement between
centrifugation and dialysis methods can be seen asP~w! con-
tinues to rise, albeit less rapidly, well abovewc . Near
weff'1, the osmotic pressure begins to rise more shar
again, reflecting the resistance of the droplets against ass
ing polyhedral shapes with small radii of curvature near th
edges. For such extreme osmotic compressions, the w
films can rupture allowing droplets to fuse, making the em
sion unstable, and the onset of droplet coalescence limits
highestw we are able to explore.

FIG. 3. The osmotic equation of stateP as a function of effec-
tive volume fraction,weff , of a monodisperse emulsion having r
dius R50.48mm measured using dextran dialysis~s!, centrifuga-
tion ~d!, and creaming in the earth’s gravitational field~solid
diamonds!. The solid line is a fit toP(weff) using the nearly linear
weak compression prediction of the single droplet model in Eq.~5!
for weff<0.80. The effective volume fraction accounts for the th
films of water and is only slightly different than the oil volum
fraction w ~see text!.
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To measureG* (v), we first establish the strain regim
where the emulsion’s stress response is linear. We se
frequency of the applied strain tov51 rad/s and sweep from
small to large strain amplitudes to determine the extent of
linear regime. The measured linearity ofG* (v) is not no-
ticeably influenced byv, although its asymptotic magnitud
as g→0 may vary with v. The strain dependencies o
G8(g,w) and G9(g,w) for a series of volume fractions ar
shown in Fig. 4 forR50.53mm andv51 rad/s. The moduli
are independent of strain belowg'0.02 for the two lowest
w, showing that the linear regime exists only at very sm
strains. For these low strain values,G8(g) is greater than
G9(g), reflecting the emulsion’s dominantly elastic natu
At larger strains however, there is a slight but gradual d
in the storage modulus while the loss modulus begins to
noticeably, indicating the approach to nonlinear yielding b
havior and plastic flow. At very large strains, beyond t
yield strain marked by the onset of the drop inG8(g), we
observe that the temporal stress wave form is not sinuso
but becomes flattened at the peaks@47#. Since this response
is nonlinear,G8 andG9 are not strictly defined here; they a
only apparent properties which reflect the peak stress
strain ratio and the phase lag defined by the temporal z
crossing of the stress relative to the strain. At these h
values of strain, the apparentG9 dominates the apparentG8,
reflecting the dominance of energy loss introduced by
nonlinear flow.

To explore the time scales for stress relaxation, we fi
small strain amplitude which lies within the linear regim
whereG8 andG9 are independent ofg, and measureG* (v)
as a function of frequency. Using this very low value of pe
strain ensures that our spectra reflect the emulsion’s true
ear moduli and are not influenced by increased dissipa
typical at largerg, in the nonlinear regime. By sweepingv
from high to low, we obtainG8(v,w) andG9(v,w); these
are shown in Fig. 5. At allw, we observe a low-frequenc
regime in whichG8(v) is constant or depends slightly o
frequency. At the highestw, G8(v) is essentially indepen
dent of v. At the lowestw however, a plateau is still ob
served, but over a narrower frequency range, withG8(v)
dropping at low frequencies and rising at high frequenc
The low-frequency drop presumably reflects the very sl

FIG. 4. Theg dependence of the storage,G8, ~solid symbols!
and loss,G9 ~open symbols! moduli of a monodisperse emulsio
with R'0.53mm, for effective volume fractions ofweff'0.77~L!,
0.60 ~n!, and 0.57~s!, measured atv51 rad/s.
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relaxation of the glassy structure of the emulsion, while
high-frequency rise reflects the fact that the system is co
prised solely of fluids, whose viscous behavior dominates
sufficiently high frequencies. In order to define an equival
to the static shear modulus, we define the plateau va
Gp8(w) of the storage shear modulusG8(v,w); this is well
defined at high volume fractions, while at lowerw, it is de-
fined by the inflection point inG8(v). In both cases, it re-
flects the overall magnitude of the static shear modu
G(w). The measured low-frequency plateau modulus
creases over three decades from low to highw.

By contrast to the plateau behavior of the dominant st
age modulusG8(v), the smaller loss modulusG9(v) exhib-
its a minimum at frequencies close to the inflection point
G8(v). The magnitude of this minimum,Gm9 (w), also in-
creases over three decades from lowest to highestw. The
minimum is shallow at the highestw, but becomes more
pronounced at lowerw.

We investigate how the droplet size influencesGp8(w) by
examining emulsions having radiiR50.25, 0.37, 0.53, and
0.74mm. Forw<0.52, the loss modulus dominates the st
age modulus, and thereforeGp8(w) or Gm9 (w) cannot be de-

FIG. 5. The frequency dependence of the storage,G8, ~solid
symbols! and loss,G9 ~open symbols! moduli of a monodisperse
emulsion withR'0.53mm, for weff50.77~L!, 0.60~n!, and 0.57
~s!. The results for the two largerweff were obtained with
g50.005, while those for the lowest were obtained withg50.015.

FIG. 6. The plateau storage modulusGp8 as a function of volume
fraction for monodisperse emulsions having radiiR50.25mm ~d!,
0.37mm ~n!, 0.53mm ~j!, and 0.74mm ~L!.
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3158 56T. G. MASON et al.
fined. However, they are well defined at largerw, and we plot
Gp8(w) for different radii in Fig. 6. The plateau modulus fo
each emulsion rises many orders of magnitude aro
w'0.60. Emulsions comprised of smaller droplets have d
tinctly smaller w at which the onset of the rise occurs. A
high w, where the droplets are strongly compressed,Gp8 is
larger for smaller droplets. By contrast withP, the plateau
modulus does not diverge asw approaches unity.

To investigate the role of the interfacial deformation
the droplets on the emulsion elasticity, we scaleGp8(w) by
(s/R), and plot the results in Fig. 7. At highw, this scaling
collapses the data for different droplet sizes. However, at
w there are large systematic deviations from this scaling.
reconcile these apparently different onset volume fractio
we must account for the electrostatic repulsion between
interfaces of droplets stabilized by ionic surfactants; this
ters thew dependences ofG and P. By usingweff @cf. Eq.
~1!# instead ofw, we account for the thin water films stab
lizing the charges between the droplets. These thin films
make the apparent packing size of each droplet larger. H
ever, the thickness of the film will be determined by a b
ance between the screened electrostatic forces between
lets and the deformation of their interfaces. Thus the ac
film thickness will be only weakly dependent on droplet siz
but will make a relatively larger contribution for the packin
of small droplets than for large droplets.

The film thickness itself depends onw, but in some un-
known fashion. Thus we linearly interpolate between a ma
mum film thickness,hmax, at low w, below rcp, where the
droplets are not deformed, and a minimum film thickne
hmin , between the facets of the nearly polyhedral droplet
wmax near w'1. Stable Newton black films of water at
similar electrolyte concentration have been observed w
hmin'50 Å @48#. This is comparable to the calculated Deb
length lD'30 Å, for 10-mM SDS solution. Thus we as
sume thathmin550 Å; this makes a larger correction for th
smaller droplets. To determine the maximum film thickne
we vary hmax until the scaledGp8(weff) for all droplet sizes
collapse onto one universal curve. We find that the fi
thickness for weak compression which gives the best
lapse ishmax5175 Å, and is the same for all droplet sizes,
shown in Fig. 8. This film thickness agrees with the me

FIG. 7. The volume fraction dependence of the plateau stor
modulusGp8(w), scaled by (s/R), for four monodisperse emul
sions having radiiR50.25mm ~d!, 0.37 mm ~n!, 0.53 mm ~j!,
and 0.74mm ~L!.
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sured separation between the surfaces of monodisperse
rofluid emulsion droplets at the same SDS concentra
@49#, lending credence to its value. Near rcp, the film i
creases the volume fraction more for smaller droplets, ab
5% for R50.25mm, and only 1% forR50.74mm.

The onset of a large elastic modulus now occurs near
at weff'wc

rcp, as expected. We note that this value is no

e FIG. 8. The scaled plateau storage modulusGp8/(s/R) ~small
solid symbols!, and the scaled minimum of the loss modul
Gm8 /(s/R) ~small open symbols!, as a function ofweff for monodis-
perse emulsions having radiiR50.25mm ~s!, 0.37mm ~n!, 0.53
mm ~h!, and 0.74mm ~L!. The ~s! symbols are the measure
values of the scaled osmotic pressureP/(s/R). The maximum film
thickness has been adjusted tohmax5175 Å to give the best col-
lapse ofGp8/(s/R).

FIG. 9. The frequency dependence of~a! the storage modulus
G8(v), and~b! the loss modulus,G9(v), for a series of effective
volume fractions below the critical packing volume fractionwc for
R'0.53mm. The lines merely guide the eye.
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56 3159OSMOTIC PRESSURE AND VISCOELASTIC SHEAR . . .
result of our assumption forh(w), but is essentially deter
mined by the measured elastic onset of the largest emuls
because the 1% adjustment to itsw is very small. The excel-
lent collapse of the data forGp8 and the agreements ofhmin

andhmax with independent observations strongly support o
use ofweff to account for the electrostatic repulsion betwe
the droplet interfaces.

We also plot the value of the minimum of the loss mod
lus Gm9 as a function ofweff for each of the droplet sizes i
Fig. 8; they also collapse onto a single curve, although
collapse is not as good as forGp8 . At high weff , well above
rcp, the elastic modulus is significantly larger than the lo
modulus; however, even at lowerweff , where the droplets are
not deformed, the elastic modulus is still dominant, albeit
not as much. We show more details of this behavior in F
9, where we plot the frequency dependence of both the s
ageG8(v) and the lossG9(v) moduli for a series of volume
fractions forR50.53mm. The plateau inG8 persists down
to weff'0.56 after dropping three orders of magnitude fro
random close packing; moreoverG9 approachesG8 as weff
decreases. By contrast, forweff'0.55, G8(v) does not ex-
hibit a flat plateau, but instead has a low-frequency drop
which appears within our measurable frequency range, w
G9(v) begins to dominate at low frequencies. Measureme
at lower weff are precluded by the stress sensitivity of o
rheometer.

The frequency where the minimum in the loss modu
occurs,vm , indicates roughly where the contributions fro
the high- and low-frequency relaxations in the emulsion
equal. Its behavior is plotted as a function ofweff in Fig. 10
for the emulsion havingR50.53mm. Evident is a pro-
nounced dip from vm'0.5 rad/s near weff50.57 to
vm'0.1 rad/s nearweff50.59, and there is a rapid subs
quent rise to nearly a constant value ofvm'10 rad/s at
higherweff . Above this cusp, the frequency of the minimu
becomes relatively insensitive to volume fraction, saturat
at higherweff .

We have repeated measurements of the frequency spe
plateau moduli, and minimum in the loss moduli as a fun
tion of w for monodisperse emulsions having a range of
viscosities:ho'12, 235, and 1070 cP. In no case did w
observe significant changes in either the magnitudes or
quency dependencies ofG8 andG9.

FIG. 10. The effective volume fraction dependence of the f
quency where the minimum in the loss modulus occurs,vm , for
R50.53mm.
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C. Discussion

The measured osmotic equation of state is in good ag
ment with the quasilinear scaling form proposed in Eq.~6!.
This is shown in Fig. 3 by the solid line, which is a fit to E
~5!, choosinga52. With this choice, a effective critica
value of wc50.60(2) is obtained, in reasonable agreem
with wc

rcp. A similar behavior has been reported for polydi
perse emulsions@19#, albeit with a considerably large
wc'0.72. This increase inwc suggests that polydispers
emulsions can pack more efficiently to higherweff because
smaller droplets can fit in the interstices of larger dropl
without deforming. Nearweff'1, our data show thatP be-
gins to diverge, withP's/R at weff'0.9, similar to the
observed behavior of polydisperse emulsions@19#. This sug-
gests thatP(weff) for highly compressed emulsions is rel
tively insensitive to the polydispersity, with the avera
droplet size setting the characteristic Laplace pressure s

Perhaps the most surprising result comes when we c
pare the normalized elastic modulusGp

IH(w)/(s/R), with
the normalized osmotic pressureP(w)/(s/R). We find that
their magnitudes are similar over a range ofweff abovewc ,
as shown on a linear plot in Fig. 1.Gp8(w) tracks the osmotic
pressure, rising nearly linearly withweff above the critical
volume fractionwc'0.64 corresponding to rcp. The assoc
tion of this rise with rcp is evidence that the macrosco
rheology is probing the elasticity of the packing of diso
dered droplets. The similarity betweenP~w! andGp8(w) over
a large range ofw is reminiscent to the critical-state theory o
soil mechanics, where the resistance to shear is proporti
to the hydrostatic pressure with a proportionality const
increasing with~soil! packing density@50#.

When the droplets are highly compressed, nearweff'1,
the emulsion’s elasticity resembles that of a dry foam and
determined bys/R. For a disordered monodisperse foa
Gp8(w) is predicted to be 0.55s/R @36#. As can be seen in
Fig. 8, we find thatGp8(w) approaches 0.6s/R, in excellent
agreement with this prediction. The absence of a diverge
of Gp8(w) nearweff'1 indicates that volume preserving she
does not cause the local radii of curvature at the dropl
edges and Plateau borders to vanish; instead, the s
merely stretches the interfaces. By contrast, the measureP
does exhibit a pronounced increase in slope asweff ap-
proaches unity. This supports its predicted divergence du
the vanishing radii of curvature as water is squeezed
although an extensive test of the predicted power la
P;(12w)21/2, is precluded by droplet coalescence.

The existence of a well-defined minimum inG9(v) ~cf.
Fig. 5! at highw contrasts with the monotonic rise found fo
a foam @51#. The minimum reflects viscous relaxations
both high and low frequencies. The high-frequency rise
G9(v) presumably reflects the increasing importance of
molecular solvent viscosity, while the low-frequency rise r
flects glasslike configurational rearrangements of the col
dal droplets. As the droplets become more highly conc
trated with increasingweff , they cannot rearrange as easi
so this relaxation is pushed to very low frequencies, perm
ting the existence of a dominant plateau elasticity. This p
teau in G8(v) and the corresponding minimum inG9(v)
have been corroborated by recent dynamic light-scatte
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measurements of the viscoelastic moduli of concentra
emulsions@52#.

The measured frequency dependencies ofG8(v,w) and
G9(v,w) for emulsions belowwc ~see Fig. 9! resemble those
of glassy hard-sphere suspensions at similarw @25#. For hard-
sphere suspensions,w is the thermodynamic variable whic
plays the role of temperature in a normal liquid-glass tran
tion; as it is raised near the glass-transition volume fracti
wg'0.58, a dominant frequency plateauG8(v) and a mini-
mum in G9(v) have also been observed. These features
the consequences of the glassy relaxation of the droplet
figurations, and the rheological behavior can be descri
using a model based on MCT@25#. This model also account
for the frequency plateauG8(v) and minimum inG9(v).
This similarity to hard spheres is reasonable, since the d
lets are spherical at thesew. Viscosity measurements for d
lute w at the same surfactant concentration have shown
the surface elasticity of the surfactant prevents coupling
flows outside the droplets to their interior@53#. Abovewg , a
hard-sphere suspension loses its low-frequency relaxa
and become nonergodic. This implies an ideal ze
frequency elastic modulus in the rheological model@no drop
in G8 nor rise inG9(v) toward lowv#. However, our emul-
sion data do show evidence of a low-frequency relaxat
even for volume fractions well abovewg where the droplets
are highly compressed. This is reflected by the increas
G9(v) asv decreases. This difference suggests that the
formability of the droplets allows a persistent relaxation
emulsions even abovewg , unlike hard spheres.

Assuming that this minimum frequency is proportional
the b-scaling frequency in simple mode-coupling theo
which is expected to show a dip~cusp! at the glass transition
volume fraction@23#, we can identifywg'0.59 for our emul-
sion from Fig. 10. This is similar towg'0.58 measured for
hard-sphere suspensions@24,25#. These observations are ev
dence that emulsions first become solids atwg , although
their elastic moduli are entropic in origin and weak co
pared to moduli dominated by droplet deformation abo
wc . The rise inG9(v) toward low frequencies above th
glass transition is indicative of structural relaxations that p
sist above wg ; it may be possible to account fo
vm'10 rad/s at these volume fractions by using a modifi
MCT, which can account for additional relaxation due to t
possibility of thermally induced deformations of the drople

It is surprising that the (s/R) scaling for Gp8(w) also
produces a reasonable collapse of the data forGm9 (w) ~see
Fig. 8!, since this scaling is based on an elastic mechan
associated with energy storage, not dissipation. This ob
vation suggests that the Laplace pressure also sets the
for the loss modulus, just as it does for the storage modu
This is consistent with a proposed model for the loss mo
lus @37#. As with Gp8(w), the magnitude ofGm9 (w) increases
dramatically nearwc where the droplets begin to pack. In th
dry foam limit, weff→1, Gm9 (w) approaches 431023s/R,
about two decades lower thanGp8(w). Since the minimum in
G9(v) cannot be described by the viscosity of Eq.~7! alone,
a meaningful comparison with this theoretical model of d
sipation is not possible. Instead, our observations sug
that the the Kramers-Kronig relations connectingG9(v) to
G8(v) may lead to an understanding of the scaling of
d
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minima in the loss modulus with volume fraction and drop
size.

The independence of our results on the internal visco
of the droplets reflects the domination of the surface tens
in the deformation of the droplets at our observation frequ
cies. To estimate the frequency above which this visco
may be important, we compare the Laplace pressure w
the maximum internal viscous stress possible dur
shear, hogv's/R. Solving for the frequency, we find
v'~s/R!/~hog). For unity strain amplitude,s510 dyn/cm,
and R51 mm droplets, the frequency for our most visco
droplets (ho'1000 cP) would bev'104 s21, well above
our range of mechanical rheometer. This argument ag
with our observations that the behavior is independent ofho
at low frequencies, although it suggests that the spectr
either higher frequencies or for emulsions with much larg
internal viscosities may be influenced byho .

IV. NUMERICAL STUDIES

A. Model and method

The difference between the theoretical predictions for
w dependence of the static shear modulusG of ordered emul-
sions and the experimental data forGp8(w) leaves us with
several unanswered questions. The effects of disorder,
exact form of the potential, the existence of nonaffine rel
ation processes all must be investigated in detail. Exist
results provided by 2D simulations are not of great r
evance, since most of these effects depend strongly on
underlying dimensionality.

The exact deformation of a single droplet under compr
sion has been studied@16# with the help of Brakke’s software
@54#, which triangulates~discretizes! the surfaces to be mini
mized under a given set of constraints. This procedure
very intensive computationally; thus only relatively sma
systems can be studied using this approach@17#. The results
obtained for the compression of a single droplet, howev
provide valuable physical insights on the increase of
droplet surface upon compression. Moreover, the knowle
of the response potential obtained for an individual drop
can in turn be used in a more coarse-grained model wh
can represent more droplets and thus include the effect
disorder.

A natural candidate for such a coarse-grained model i
represent a collection ofN droplets byN pointlike particles
confined in a ‘‘bulk’’ system obtained by imposing period
boundary conditions. The resulting system has a redu
number of 3N degrees of freedom. While the total interfaci
area of anN-droplet emulsion is essentially a function of 3N
variables, to a good approximation, the interfacial area of
individual droplet can be described by a function of only t
respective positions of all its interacting neighbors. A mu
cruder approximation, which should be valid at very sm
compression, consists in approximating the droplet’s pot
tial by a sum of two-body interactions and neglecting high
order terms. While high-order interactions are necessar
account for volume conservation effects such as the div
gence of the osmotic pressure at highw, it is not clear how
important they are for moderately compressed emulsions

In an extensive numerical study@16# of the response of a
single droplet to compression by various Wigner-Seitz ce
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it was shown that, for moderately compressed emulsions
interaction potentialU can be approximated by a power law

U~j!5k8sR2ja, ~8!

wherek8 is some constant,j is defined as in Eq.~4!, anda is
a power larger than 2. The striking point of this study is th
high-order terms are important since it was demonstra
thata andk8 depend on the number of interacting neighbo
A better fit over a wider range of the data was obtained

U~j!5ksR2@~12j!2321#a, ~9!

which has the advantage of being reducible to terms
(w2wc) for ordered structures. For the sake of comparis
we shall use both potentials in the present study, w
k853ak.

In order to reconcile computational tractability and t
inclusion of three-body and higher interactions, we use
following approach for studying disordered structures:
construct disordered systems of hypothetical soft spheres
interact through a two-body, short-range, central-force rep
sive pairwise potential represented by a power law@either
Eq. ~8! or ~9!# with a form ~coefficient and exponent! de-
pending on the average coordination number of the syst
While still mean field in nature, this potential is a defini
improvement over simple two-body interaction potentia
Moreover, the anharmonicity of this potential implies th
the system will deform nonaffinely, and this model enab
us to measure these effects directly.

Under pairwise repulsive potentials, the particles can
thought of as soft compressible spheres, pushing one ano
and deforming when their separating distance is smaller t
the sum of their undeformed radii. The total energy of t
system is the sum of all the energy involved in the intera
ing pairs. The osmotic pressure is obtained from the vi
@55#.

With the help of this model, we can study the facto
influencing thew dependence of the static shear modulusG,
and thus account for our experimental data. For this purp
we separately investigate the effects of disorder, and
form of the interaction potential on the elastic response.

B. Numerical results and discussion

1. Ordered systems

It is instructive first to investigate the behavior of regu
structures of compressible spheres responding to comp
sion with the repulsive potentials introduced in Eqs.~8! and
~9!. Since ordered structures can be described by a si
node, these problems can be solved analytically and, h
the elastic properties of ordered systems are derived for
form compressions and uniaxial shear deformations. The
formations are always applied along the principal axes of
usual representative unit cells. The details of the calculati
are presented in the Appendix.

For all structures, we define the displacement by@gener-
alizing Eq.~4!#

j512r /R, ~10!
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whereR is the undeformed soft sphere radius, andr is half
the distance between the centers of two interacting sph
(r ,R). By dealing with ordered structures, the shear def
mation always leads to the equilibrium~affine! configuration
of the system, and, thus, the notion of ‘‘center of the dro
let’’ still has a meaning.

A springlike potential only takes into account two-bod
interactions, and thus cannot capture the effects of volu
conservation. It is instructive, however, to see how sensit
the shear modulus of ordered structures is to the form of
potential assumed by our hypothetical soft spheres. Figure
compares both potentials of Eqs.~8! and~9!, with a ranging
from 2.0 to 2.5~k51 has been kept constant in order
spread the curves!. In the inset, the static shear modulus of
fcc lattice of hypothetical soft spheres interacting throu
these potentials and undergoing a uniaxial shear deforma
is presented for the same values ofa. Numerical surface
calculations of the shape of a single droplet uniformly a
moderately compressed in a fcc lattice have shown that
excess surface energy per contact can be fit by Eq.~9! with

FIG. 11. Two interaction potentials for a maximum displac
ment corresponding tow50.84. The corresponding static she
modulus of a fcc lattice undergoing a uniaxial strain is shown in
inset. Dashed curves are for Eq.~8! while solid curves are for Eq.
~9!. Curves are for, top to bottom,a52.0, 2.1, 2.2, 2.3, 2.4, and
2.5.

FIG. 12. The static shear modulus of an sc lattice undergoin
uniaxial deformation. The dashed curve are for Eq.~8!, while the
solid curves are for Eq.~9!. Curves are fora52.0, 2.1, 2.2, 2.3,
2.4, and 2.5, from top to bottom.



in
e
ula
ce

e

b-
rs
-

o
ro
at
re

r-
-

xi
fo

ce

p

pe

de

a
ve
d

f
.
l-

ea

te
ri

b
nt
on

c-
m-
as-

ust
at

tion
te-
to
en-
the
til it
d,

dis-
d
-
ar-
tion
ck-

,
as

by

s

3162 56T. G. MASON et al.
an exponenta'2.4 @16#. The static shear modulus shown
this figure for a52.4 compares very well with the tru
uniaxial shear modulus as obtained from numerical calc
tions of a single droplet uniaxially sheared in a fcc latti
@16#.

For anharmonic potentials~i.e., a.2!, G exhibits two
characteristic features: a sharp onset atwc so that
(]G/]w)uwc

diverges, followed by a region wher

]2G/]w2&0. This is in contrast with experimental data o
tained for disordered emulsions, showing a vanishing fi
derivative atwc , followed by an increase of positive curva
ture. For harmonic potentials (a52), G exhibits a disconti-
nuity at wc @see the analytical form in Eqs.~A4! and ~A6!#.

Figure 12 shows the same quantities for a sc lattice. N
that for moderate compressions, the true response of a d
let in a sc lattice has an exponent close to 2.2. The st
shear modulus obtained from our hypothetical soft sphe
interacting with Eq.~9! ~and a52.2! compares very well
with the true estimate ofG, as obtained from numerical su
face calculations@16# or from an expansion at small com
pression@14#.

For a bcc structure, the lattice is unstable under a unia
shear along one of its principal axes as such a strain de
mation gradually transforms a bcc lattice into an fcc latti
thus continuously decreasing its energy.

One can also compute the value of the modulus for sim
shear strains, as applied along the principal planes~e.g.,
@100#!. The corresponding values ofG are only positive for
fcc and bcc lattices, since a sc lattice is unstable with res
to this deformation. Calculations ofG for simple shear
strains give results similar to those obtained for uniaxial
formations, and will therefore not be presented here.

Although a pairwise-potential model can only include r
dial compressive forces, we demonstrated that it can ne
theless reproduce the qualitative features of the shear mo
of ordered structures, in particular thew dependence ofG.

The calculations of the osmotic pressure are the same
all lattice structures, and are presented in the Appendix
the vicinity of w*wc , both potentials show the same sca
ing, i.e.,

P/~s/R!'
kazc

2acell
F S w

wc
D21Ga21

, ~11!

where zc is the coordination number, andacell is a lattice
specific constant~see the Appendix!. The osmotic pressure
thus contrasts with G, having a smooth rise
„(]P/]w)uwc

'0… at wc .

2. Disordered systems

In order to investigate the effects of disorder on the sh
modulus, we numerically study disordered systems ofN hy-
pothetical soft spheres interacting through the same po
tials Eqs.~8! and ~9!. The systems are cubic and have pe
odic boundary conditions~PBC’s!, with N ranging from
1000 to 4913. Smaller systems were also studied, but
cause of the combined effects of the softness of the pote
and PBC’s, these systems have a tendency to order sp
neously in fcc at high~osmotic! pressure.
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The initial configurations are prepared at a volume fra
tion w i by randomly selecting the coordinates of the defor
able droplets and then relaxing the system by slowly incre
ing the potential to its desired value. We find that we m
choosew i*wc

rcp to avoid the slow relaxation observed
random close packing. The systems are then~uniformly!
compressed and relaxed in small increments. The relaxa
is done by minimizing the energy through a conjuga
gradient algorithm@56# modified to ensure convergence
the closest minimum. At the end of each relaxation, the
ergy is computed as well as the coordination number and
osmotic pressure. The system is compressed this way un
reachesw'0.85, at which value the procedure is reverse
and the shear modulus is computed at each value asw is
decreased.

To investigate the behavior of the packing, in Fig. 13~a!
we plot the radial distribution functiong(r ) of a system of
4913 soft spheres as it is uniformly compressed. The
tances are measured in diameter (D) units, and are rescale
by the factorn5(wc /w)1/3<1. Note how all the curves col
lapse for larger , showing that there are no large scale re
rangements: contact effects dominate. The radial distribu
exhibits the two characteristic peaks of random close pa
ings as discussed by Bernal@57# and Finney@58#: the first
one at r'1.75D is related to different local geometries
while the second one is related to colineation of spheres
supported by the sharp drop atr 52.0D ~representing an
angle p between three osculatory spheres!. These colinea-

FIG. 13. The radial distribution function of aN54913 hypo-
thetical soft-sphere system. In~a!, the distance has been rescaled
the compression factorn5(wc /w)1/3. In ~b!, the details ofg(r ) are
shown nearr 5D. The curves are for 18 different volume fraction
ranging fromw50.66 to 0.85 in steps of;0.01.
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56 3163OSMOTIC PRESSURE AND VISCOELASTIC SHEAR . . .
tions, however, are affected by compression, as can be
from the broadening of the peak: this broadening is due
aligned~angle ofp! osculatory triplets that stay aligned an
stretched even after compression. This is one indication
the relaxation is nonaffine.

Figure 13~b! shows an expanded view of the contact pe
It is sharp atw*wc

rcp and then broadens as the system
compressed, showing that a wide range of interacting c
tacts is taking place. The sharp cusp atr 5D found at mod-
eratew shows that some spheres can still ‘‘escape’’ fro
interactions with some of their neighbors. The part of t
first peak atr .D represents spheres about to touch: a
small compression will bring these in contact, thus incre
ing the coordination number. This presence of such alm
osculatory neighbors is also present in packings of h
spheres, making the evaluation of the coordination num
rather difficult, and leading to an overestimate in most ca
@59#. For soft compressible sphere systems, these ‘‘almo
neighbors play an important role in the elastic response. T
effect is better seen from Fig. 14, which shows the proba
ity distribution of the coordination number for different un
form compressions. This plot exhibits some interesting f
tures of disordered systems. The absence of any node ha
zc512 at low compression is striking, showing that rcp h
short-range order which favors smaller coordination nu
bers. The curves are well described by a Gaussian, altho
there seems to be some systematic skewness at the tails
mean coordination number increases as the system is c
pressed, while its distribution appears to be narrower. Fo
emulsion, the increase of the coordination number plays
important role for two reasons: it increases the number
contacts, and it changes the response of the individual d
lets. The first effect is captured by the present model, w
the second can be taken care of by modifying the interac
potential as the coordination number changes.

The static shear modulusG(w) is obtained by gradually
applying a uniaxial strain in small step increments, relax
the system ~always using the same conjugate-gradie
method! at each small shear increment. The size of the sh
increments has been tested for reliability: the same res
are obtained after halving its value, showing that we are
regime whereG does not depend on the value of the sh
strain step increment. We determined that a shear step in

FIG. 14. The probability distribution of the coordination numb
for theN54913 hypothetical soft sphere system. The curves are
to Gaussian distributions. The system is uniformly compresse
the volume fractions indicated in the graph.
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ment of Dl51024 is an optimal value. For most cases,
maximum strain ofg50.002 is sufficient to obtain good nu
merical data while minimizing the computation: our resu
demonstrate that with this value, we are in the linear, per
bative regime.

Figure 15 shows the shear modulus and the osmotic p
sure of a disordered system ofN53375 hypothetical soft
spheres interacting with a potential of the form of Eq.~9!
with fixed values ofa52.0 and 2.5. For both sets of curve
we usek51, so that the amplitude is arbitrary and the tw
sets should not be directly compared. Fora52, G and P
have different slopes at the onset, while fora52.5 the two
curves are much closer. The curvature (d2G/d2w) is slightly
negative for Eq.~9! anda52. Simulations of systems of sof
spheres interacting with with Eq.~8! and a52 ~i.e., a
straight harmonic potential! have a negative curvature that
even more pronounced. The results for Eq.~9! and a52.5
definitely show a positive curvature at the onset, similar
the one observed experimentally. We thus see that the f
of the potential has an effect on the qualitative response
the shear modulus of disordered emulsions.

For droplets in ordered lattices, the response to comp
sion depends on the number of neighbors, with an expon
that varies approximately linearly froma'2.0 atzc56 ~for
sc! to a'2.4 atzc512 ~for fcc!, when fitting surface calcu-
lations results to Eq.~9! @16#. In view of determining the
elastic response of disordered systems as precisely as
sible, we use the following scheme for the potential: we u
Eq. ~9! with an exponent that varies according
a5210.4(z̄c26)/6, and a coefficientk( z̄c) obtained from a
cubic interpolation scheme between the values obtained
ordered lattices@16#. For a system aN51000 soft spheres
we obtain the curve shown in Fig. 1, where the static sh
modulus and the osmotic pressure are compared with
experimental values of the scaled plateau modulusGp8(weff)
andP(weff). For a large range ofw, the agreement betwee
the measurements and simulation results is excellent bot
magnitude and overall shape. Such good agreement w
not have been obtained without the realistic droplet poten
and the disordered droplet structure inherent in the mode

ts
at

FIG. 15. The static shear modulus of a disordered system
dergoing a uniaxial deformation. The potential is as Eq.~9! with
a52 ~top! and 2.5~bottom!. The symbols representG ~one for a
uniaxial strain in each spatial direction! while the solid lines repre-
sentP. ~Dotted lines merely guide the eye!.



e

e
pl
tr
g

ra

e

b
-

T
ri
o

ee
ple
u
th
in

ic
nt
o

th
so

a
rit
nc
se
th

ei
o

at
m
-
iv
ti
i

v
tri

e
b

he
ca

on

c
the
al
lsion

se
re
nd

ich
s at

ay
os-

re-
ise,

udy
ul-
ef-

m-
ate
te

ant

an
u,
y
l to

du-
ial
l of
12

n,

et
he
nt

3164 56T. G. MASON et al.
These features of the simulation suggest that the res
blance betweenG(w) and P~w! found experimentally for
emulsions may be fortuitous, resulting from the combin
effects of disorder and the particular response of the dro
to compression which can be obtained from purely geome
arguments. However, it may be possible that other hetero
neous dispersions of repulsive elements which inte
through more general anharmonic potentials than Eq.~9!
may also exhibit the same similarity betweenG(w) and
P~w!. Unfortunately, our present knowledge of statistical g
ometry is not sufficient to either support or rule out such
conjecture.

V. CONCLUSION

Our measurements clearly demonstrate the similarity
tween the longitudinalP~w!, which maintains the static de
formation of the droplets, and the transverseG(w) for mono-
disperse emulsions having a disordered, glassy structure.
monodispersity has enabled us to interpret the strong
from the entropic to the Laplace scale in terms of packings
monodisperse spheres. In addition, it has allowed us
meaningfully compare the measurements with a thr
dimensional model that incorporates both a realistic dro
repulsive potential and a disordered droplet positional str
ture. The excellent agreement of the simulation based on
model with the experimental results confirm that the orig
of this similarity lies in these two essential features.

This central result provides a first insight into the elast
ity of disordered packings of identical repulsive eleme
forced together under an applied osmotic pressure. By c
trast to conventional homogeneous solids, in which
moduli of compression and shear are comparable, for di
dered heterogeneous solids~e.g., emulsions! the osmotic
pressure itself, not the osmotic modulus of compression, m
be closer in magnitude to the shear modulus. This simila
may hold for other materials besides emulsions. For insta
our results should be directly applicable to foams compri
of gas bubbles, and they may also provide a guide to
viscoelastic behavior of concentrated microgel beads@60#
and multilamellar vesicles@61,62#. The model we have in-
troduced may even provide realistic predictions for th
G(w) andP~w!, provided an average response of a bead
vesicle to deformation can be calculated.

Despite the success of our model for describing the st
elastic modulus and osmotic pressure of compressed e
sions, it cannot predict the fullv dependence of the vis
coelastic moduli, since it does not consider dissipat
mechanisms. The exact nature of the slow glassy relaxa
of the disordered droplet structure, indicated by the rise
G9(v) toward smallv, remains obscure forw.wg , espe-
cially when the droplets are strongly deformed well abo
wc . In addition to dissipative mechanisms, entropic con
butions toG8(w,v) andG9(w,v) must likewise be included
as P falls well below the Laplace pressure scale, befor
meaningful comparison with the experimental data can
made forw,wc . There, the frequency dependence of t
viscoelastic moduli exhibits the characteristic rheologi
features of a colloidal glass: a plateau inG8(v), a minimum
in G9(v), and a frequency associated with minimumvm(w)
which exhibits a cusp at the glass transition volume fracti
m-
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For undeformed droplets belowwc , there is a strong simi-
larity between the emulsion’sv-dependent viscoelasti
moduli and those of disordered hard spheres, indicating
importance of entropy and the influence of the colloid
phase behavior and glass transition on concentrated emu
rheology.

This study of the rheology for repulsive monodisper
droplets provides a foundation for comparison with futu
studies which consider the role of interdroplet attractions a
polydispersity. In the case of attractive emulsions, wh
may form very tenuous solid aggregates or gels of droplet
w much less thanwc , the simplicity of our interpretation of
the rheology in terms of familiar packings such as rcp m
be precluded. In fact, the thermodynamic concept of an
motic pressure of attractive droplets at dilutew may be com-
pletely different, since the aggregate may not be able to
versibly re-expand once it has been compressed. Likew
the simple packing interpretation we have used in this st
may become much more complicated for polydisperse em
sions. However, by contrast to the past approaches, the
fects of polydispersity can now be precisely studied by co
bining different monodisperse emulsions to gener
systematically controllable size distributions. We anticipa
that the results of both of these studies will lead to import
new results.

ACKNOWLEDGMENTS

We thank Shlomo Alexander, Paul Chaikin, Herm
Cummins, Doug Durian, Eric Herbolzheimer, Andrea Li
David Morse, Tom Witten, and Denis Weaire for man
stimulating discussions and suggestions. We are gratefu
the Fonds FCAR du Que´bec ~M.D.L.!, the U.S.-Israel Bina-
tional Science Foundation~D.L.!, and the NSF~DMR96-
31279, D.A.W.! for financial support.

APPENDIX CALCULATION OF G AND P

FOR ORDERED LATTICES

For the sake of demonstration, we derive the shear mo
lus of a fcc lattice of springlike droplets under a uniax
strain. To represent the fcc lattice, we choose a unit cel
one node connected to its neighbors by the following
vectors:

2r 8~0,61,61!/&,

2r 8~61,0,61!/&, ~A1!

2r 8~61,61,0!/&,

where r 8 depends on the amount of uniform compressio
which is imposed through a factorn5(wc /w)1/3<1:
r 85nR, whereR is the equivalent of the undeformed dropl
radius; more correctly in the present context, it is half t
range of interaction of our springlike potential. In the prese
case,wc5wc

cp is understood although we usewc to simplify
the notation. This potential is taken to be

U~r !5ksR2F S R

r D 3

21Ga

, ~A2!
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for r ,R, and zero otherwise, andk is some constant we
define as unity. In order to determine the effect of the ex
nenta on the shear modulusG, we impose a uniaxial strain
on our unit cell: thez direction is stretched by a facto
l511e, while the perpendicularxy plane is compressed b
a factorl21/2. The volume of our unit cell is unchanged b
this transformation and remains 25/2n3R3. Applying a uni-
form compression and a uniaxial shear to the vectors of
~A1!, the excess energy densityu of our model is

u~l,n!/~s/R!5
k

2&
n23H 2F S n

&
~l211l2!1/2D 23

21Ga

1F S n

&
~2l21!1/2D 23

21GaJ . ~A3!

The shear modulus is obtained for smalle ~expanding to
second order!, usingu(e,w)2u(0,w)5(3/2)G(w)e2 @63#,

G~w!/~s/R!5
9ka

16&

w2

wc
a11 ~w2wc!

a22@w~a22!1wc#.

~A4!

One can also define a simpler potential

U~r !5k8sR2F12
r

RGa

, ~A5!

which is a simple harmonic spring whena52. In this case,
we usek853ak in order to perform a direct comparison wit
Eq. ~A2!. For the same uniaxial strain, the shear modulus
a fcc system of deformable spheres interacting with suc
potential is found to be
-

.

s.
-

q.

f
a

G/~s/R!5
k8a

16&

w12a/3

~wc!
2/3

~w1/32wc
1/3!a22

3@~a16!~wc!
1/327w1/3#. ~A6!

A similar procedure is used for determining the shear mo
lus G of other types of strains and lattices.

The calculation of the osmotic pressure is independen
the lattice structure, since a uniform compression yields
equilibrium configuration. The osmotic pressure is obtain
~at e50! from the energy density by

P5w
]u

]w
2u. ~A7!

For Eq.~A5!, one finds

P/~s/R!5
k8azc

6acell
S w

wc
D 2/3F12S wc

w D 1/3Ga21

, ~A8!

wherezc andwc depend on the lattice andacell58, 32/33/2,
and 25/2 for sc, bcc, and fcc, respectively.

For potential Eq.~A2!, one finds a similar form, namely

P/~s/R!5
kazc

2acell

w2

wc
11a

~w2wc!
a21. ~A9!

Note that for a disordered structure the coordination num
zc(w) depends on the volume fraction.
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