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We present an experimental study of the frequesa@ependence and volume fractigrdependence of the
complex shear modulu§* (w,¢) of monodisperse emulsions which have been concentrated by an osmotic
pressurdll. At a given ¢, the elastic storage modul®’ (w)=RdgG*(w)] exhibits a low-frequency plateau
G,'), dominating the dissipative loss modul@$( ) = Im[G* (w)] which exhibits a minimum. Above a critical
packing fractione., we find that bothll(¢) and Gr')((p) increase quasilinearly, scaling ag ¢.)*, where
e~ orP, the volume fraction of a random close packing of spheres aigan exponent close to unity. To
explain this result, we develop a model of disordered droplets which interact through an effective repulsive
anharmonic potential, based on results obtained for a compressed droplet. A simulation based on this model
yields a calculated static shear modufasand osmotic pressur that are in excellent agreement with the
experimental values d&;, andIl. [S1063-651X97)15008-5

PACS numbgs): 82.70.Kj, 81.40.Jj, 62.20.Dc

[. INTRODUCTION unpacked spherical droplets loses it shear rigidity and is
dominantly viscous, like the suspending fluid. Thus emul-
An emulsion is an immiscible mixture of two fluids, one sions are versatile materials whose rheological properties can
of which is dispersed in the continuous phase of the othemange from viscous to elastic depending on the applied os-
typically made by rupturing droplets down to colloidal sizesmotic pressure, and therefoke It is precisely this broad
through mixing. To inhibit recombination, or coalescence, arange of rheological behavior that gives rise to many tech-
surfactant which concentrates at the interfaces must be add@@logical applications; low viscosity oils can be made effec-
to create a short-ranged interfacial repulsion between théively rigid if emulsified in water and osmotically com-
droplets[1,2]. For an appropriate surfactant, a quantity muchpressed to high volume fractions, while high viscosity oils
less than the mass of the liquids is often sufficient to make&an be made to flow more readily if emulsified at dilute
this interfacial repulsion strong enough to render the emulvolume fractions in water.
sion kinetically stable against coalescence and demixing for Emulsions possess microscopic mechanisms for both elas-
many years. This kinetic stability differentiates emulsionstic energy storage and viscous dissipation. They are vis-
from thermodynamically stable microemulsions which formcoelastic, exhibiting a stress response to a dynamically ap-
spontaneously without mixing when the proper proportionsplied shear strain that is partially liquidlike and partially
of certain fluids and surfactants are placed in contact. solidlike. The energy storage and dissipation per unit volume
Despite being comprised solely of fluids, emulsions con-can be represented by the frequency-dependent complex vis-
sisting of highly concentrated droplets can possess a strikingoelastic shear modul@s* (w, ¢), which is defined only for
shear rigidity that is characteristic of a solid. The nature ofperturbative shears in which the stress and strain are linearly
this elasticity is unusual; it exists only because the repulsivgeroportional[3,4]. The real parG’(w)=RdG*(w)], or stor-
droplets have been compressed by an external osmotic pregge modulus, is the in-phase ratio of the stress with respect
surell, and thus concentrated to a sufficiently large dropleto an oscillatory strain, and reflects elastic mechanisms,
volume fractiong, which permits the storage of interfacial whereas the imaginary pa®”(w)=Im[G*(w)], or loss
elastic shear energy. For instancelif¢) approaches the modulus, is the out-of-phase ratio of the stress with respect
characteristic Laplace pressure required to deform the drogde the strain and reflects dissipative mechanisms. Linearity
lets (20/R), whereo is the interfacial tension an@ is the  and causality imply thaG’(w) and G”(w) are interrelated
undeformed droplet radius, the droplets pack together anlly the Kramers-Kronig relatiorf8—5] indicating their inher-
deform, creating flat facets where neighboring dropletsent link to the dissipation of shear stress and strain fluctua-
touch. As the osmotic pressure is raised even furthéends  tions in an emulsion. Understandin@* (w,¢) for well-
toward unity, and the emulsion resembles a biliquid foamcontrolled emulsions over a wide range @fwvould provide
Provided the droplets are compressed by an osmotic presaluable insight into the importance of the elastic and dissi-
sure, additional energy can be stored by imposing shear d@ative mechanisms as the droplets become packed and de-
formations which create additional droplet surface area; thiformed.
gives rise to the emulsion’s elastic modulus. However, if a In this paper, we present experimental measurements of
concentrated emulsion is diluted, so that the osmotic pressutbe osmotic pressure and complex shear modulus of mono-
drops well below the Laplace scale, the resulting emulsion oflisperse emulsions compressed to different volume fractions.
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By using well-controlled emulsions consisting of droplets of 045 : . . . .
a single sizg6,7], our approach offers several advantages 040 | 0]
over previous rheological experimerii8,9,19 which were 035 | .
made using emulsions having a broad distribution of drople! % 030 | .
sizes. Indeed, polydisperse emulsions are difficult to study €

. ) X o 025}
because they contain droplets with many different Laplace 2
pressures so that, at a fixed osmotic pressure, the large dro 2 0.20
lets may deform significantly while the small droplets remain = 015
essentially undeformed. Moreover, the droplet packing anc © o010}
deformation cannot be easily connectedgtdbecause small 0.05 |
droplets can fit into the interstices of larger packed droplets 0.00 . - . .
By contrast, using monodisperse emulsions eliminates thes 0.65 0.70 0.75 0.80 0.85
inherent difficulties: all the droplets have the same Laplace M

pressure. Moreover, the volume fraction can be simply re- FIG. 1. The scaled shear modulus and osmotic pressure as a
lated to the packing of identical spheres, thus allowing for, - ui Ic pressu

meaningful comparisons with theoretical predictions whichfumtion of ¢. The computed scaled static shear modulus
g P P G/(o/R) (+) and osmotic pressurH/(o/R) (line), as obtained

have usually assumed that the emulsion is monodisperse agd - ..o odel presented in Sec. IV B 2, are compared with the

ordered. ) ,
experimental values db M) andII 0O).
The earliest calculations d1(¢) andG(¢) for emulsions P pler) (W) (er) ()

and foamg 1117 are based on perjectly ordered cry§tals Ofé)e shown from Fig. 1. We measure the frequency dependent
droplets. In such systems at a given volume fraction an

) . séorage modulu&’ (w, ¢), and take the low-frequency pla-
applied shear strain, all droplets are compressed equally ar% lueG’ the static sh dul 0
deform affinely under the shear; thus all droplets have ex-eag \I/a]?e PI(Q.D) as g. S adlc Sd ear ITO u Lq?("o)' | ur |
actly the same shape. Describing the dependendé ahd model of emulsions as disordered packings ol repuisive ele-

G on ¢ then reduces to the “simpler” problem of solving for ments is very general, and may also be applica_ble to oth_er
the interfacial shape of a single droplet within a unit Ce"_matenals which become elastic under an applied osmotic

Nevertheless, calculating the exact shape and area of Suchcgmpregs:olr], pro(\j/_|f(_:le(§i the potential between the elements is
single droplet at allp> ¢ is a very difficult free-boundary appropriately modiied.

problem that can only be solved analytically for simple cases The structure Of. this paper IS as follows. In S_ec. Il, we
[16], or numerically[16,17. Real emulsions, however, ex- review the theoretical predictions for the osmotic pressure

hibit a disordered droplet structure, and a comparison of exgnd shear rheology of emulsions. In Sec. Ill, the experimen-

perimental results to these theoretical predictions is inapprot—al aspects of this study are described; Sec. lll A describes

priate. In particular, the comparison of teedependence of the emulsion preparation and the rheological measurement

the low-frequency plateau value of the storage modulus ofechniques; Sec. Il B presents the resuilts of our measure-
ents; and Sec. Il C compares our experimental observa-

disordered, monodisperse emulsions to the static she " ot dicti d . s |
modulus predicted by these studies has demonstrated the € NS 10 €xisting predictions and previous measurements. n

istence of significant discrepancifts] order to understand the difference found between our results
The origin of the elasticity of an emulsion arises from theand the predictions existing for ordered arrays of droplets, in

packing of the droplets; forces act upon each droplet due t5€c- IV we present the results of numerical studies based on

! . . - . ; a model that can account for disorder. In Sec. IV A, we de-
its neighboring droplets pushing on it to withstand the os cribe the details and the motivation of the model, while, in

motic pressure. However, all these forces must balance t t VB t and di the simulati s, A
maintain mechanical equilibrium. Calculations of the elastic ect. we present and diScuss the simufation results.
9r|ef conclusion closes the paper.

properties of such disordered packings are complicated b
the many different droplet shapes and the necessity of main-

taining mechanical equilibrium as the droplets press against Il. THEORY

one another in differing amounts. While a general theory of _ )

the elasticity of disordered packings may ultimately lead to !N order to understand the properties of packings of de-
precise analytical description of emulsion elasticity, com-1ormable spheres, it is useful first to review the packing of
puter simulations including adequate interdroplet interactionStatic, solid spheres. Their packing determines the critical
and accounting for the complexity associated with disordel/©/Ume fractione, at which the onset of droplet deformation
can provide insight into the origins of thedependent shear ©0¢curs and the coordination numbgrof nearest neighbors
modulus. In order to understand the effects introduced bjeuching & given droplet. The highest volume fraction of
disorder, we developed a model for compressed emu|sior{§10nodlspe_rse ha_rd spheres is attalned_for ordered crystalline
which includes a disordered structure as well as realisti§iructures, including face-centered-(gu(f[c[:) and hexagonal
droplet deformationg10]. In this model, we formulate an close packing(hcp. These haveec’= mv2/6~0.74 and
anharmonic potential for the repulsion between the packe@. =12. By randomly varying the stacking order of the
droplets, based on numerical results obtained for individuaPlanes, a random hexagonally close-packéxtp structure
droplets when confined within regular celts6]. Numerical ~ can be made, but this does not alter eitpgror z.. Other
results for the osmotic pressurkand the static shear modu- ordered packings are less dense. For example, the body-
lus G obtained from this model are in excellent agreemententered-cubic(bce) packing haseg®= 7v3/8~0.68 and

with our experimental values dil and the elasticity, as can z*gccz 8, while the simple cubic (so packing has
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¢°= /6~0.52 andz’= 6. The strict definition of a packing detailed geometries of the individual contacts. o
excludes conditions of mechanical stability. However, under FOr an emulsion of oil in water stabilized by an ionic
an interdroplet potential that is purely repulsive and spheriSurfactant, each interdroplet contact is in reality a charged
cally symmetric as the one found in emulsions, both bcc an&ystem of interfaces o|I—surfa_ctant-water—surfactant—qlI, mak-
sc are unstable against weak random mechanical agitation#?g the contact purely repulsive and thus stable against coa-
By contrast to ordered packings, mechanically stable disoScence. The presence of a thin water '?yef bgtwee_n Inter-
ordered packings occur at significantly lower volume frac—aCtIng droplets exists at all volume fractions, includipg

. : . . near unity. The screened double-layer repulsion has a
tions. By shaking loosely packed macroscopic ball bearlnggtrength determined by the surface potential and a range
[20], or through entropically driven Brownian motion for

. . . . i . characterized by the Debye length [26]. These depend on
colloidal-sized particles, the packing density can be iNyo interfacial concentration of the surfactant, the bulk ionic

creased up to a.repr?gumble limit termed random close packsoncentration in the aqueous continuous phase, and the tem-
ing (rcp) for which ¢gP~0.64[21] (conjectured to be % perature. Two droplets forced together will begin to deform
[22]) and at an average coordination numiEP~6 [10].  before their interfaces actually touch due to the electrostatic
From experimental observation, this is the highest volumeepulsion; the droplet system minimizes its total free energy
fraction at which disordered monodisperse hard spheres cay reducing the energy due to electrostatic repulsion at the
be packed. expense of creating some additional surface area by deform-
While increasing the volume fraction of a dilute colloidal ing the droplet interfaces. Thus, the droplets have an effec-
system towarde™, the packing of spheres undergoes antive radius larger than their actual size, and consequently,
ergodic to nonergodic transition, or a colloidal glass transithey deform fore below ¢ [27,28. This electrostatic repul-
tion, at a valuep, well below ¢". Above ¢4, every sphere  Sion can be accounted for by using an effective volume frac-
is confined into a local region by the cage formed by itstion which incorporates a first-order correction for the film
neighbors; however, there remains some degree of locdhicknessh,
translational free volume within its cage. Despite this mo-
tion, the global configuration remains locked into a glassy e~ @[ 1+ 3/2(h/R)], (1)
structure, since the probability for a sphere to diffuse out of
its cage over a reasonable time scale is essentially zero. Béor h<R [27]; this ¢y represents the actual phase volume
low ¢4, the system exhibits an ergodic behavior. The colloi-fraction of packing, allowing us to account exclusively for
dal glass transition is well-described by mode-couplingthe effects of the packing. Although this approximation as-
theory (MCT), which assumes that the vibrational modes ofsumes that the droplets are spherical, it is valid to within
the glassy structure at different wave vectors are inherentlf0% even for nearly polyhedral droplets nes«1 [29].
coupled23]; it predicts thakp,~0.58. Light-scattering mea-
surements[24] and mechanical rheological measurements
[25] of disordered colloidal hard-sphere suspensions support
this prediction fore, . Just as the structure and interactions between atoms de-
The behavior of an emulsion far< ¢, is expected to be termine the pressure-volume equation of state for homoge-
reminiscent of that of hard spheres; any elastic behavior i§eous solids, the structure and interactigdeformability
entropic in natureg[25]. We emphasize, however, that the between droplets determines the osmotic equation of state
magnitude of this entropic elasticity is significantly lower II(¢) of dispersions of droplets. The osmotic equation of
than that controlled by surface tension, singel <oR?; state for emulsions governs tk@smotig compression of the
nevertheless, below, it is measurable. As the volume frac- droplets at fixed total droplet volume, allowing the free ex-
tion is increased further, one eventually reaches a volumghange of solvent with a reservd0]. As the droplets are
fraction at which the droplets can no longer pack withoutcompressed by the osmotic pressure, their total surface area

deforming; for a disordered monodisperse emulsion, this ocA(¢) increases above that of the undeformed drophets

curs initially at o~ ¢'°. Since the interactions between Which is, for example, #NR? for a monodisperse collection

emulsion droplets are purely repulsive, work must be don@f N droplets of undeformed radid& For any monodisperse
against surface tension to compress and deform the drople@Mulsion ind dimensions, the osmotic pressure is obtained
This work is done through the application of an osmoticfrom

pressure and the resulting excess surface area of the droplets

determines the equilibrium elastic energy stored at a fixed I(¢)/(c/R)=dg? —
osmotic pressure. The additional excess surface area created Je
by a perturbative shear deformation determines the static

shear modulusG(¢). Thus the elasticity and the osmotic In this equation and what follows, we assume that the surface
pressure are both controlled by the surface tension of thtension is constant. Below., the droplets are not com-
droplets, or their Laplace pressure. Althoudhand G rep-  pressed, sé\(¢) is constant A=A,) and any surface ten-
resent fundamentally different properties, they both depengion contribution td1 vanisheqdan entropic contribution re-

on the degree of droplet deformation and therefgreln  maing. By contrast, when the droplets are compressed above
principle, both can be determined if all the droplet shapes are., their surface area increases as they press against neigh-
known. These shapes depend upon the overall positiondloring droplets and deform, ardd increases.

structure, or packing, of the droplets as they press against The droplet response to compression has three character-
their neighbors in mechanical equilibrium, and also upon théstic regimes in three dimension6]. First, when the drop-

A. Osmotic pressure

@

A(p)
A, |



56 OSMOTIC PRESSURE AND VISCOELASTIC SHHA. .. 3153

likely not to respond affinely, since the creation of any new
contact will change the conditions for local mechanical equi-
librium.

This anharmonic region is followed by a third regime, in
which the droplet response to compression sharply rises, due
to volume conservation effects. This is the regime near the
biliquid foam limit where ¢—1, so that most of the
continuous-phase liquid has been extracted; there only re-
mains thin veins for which the radii of curvature of the free

FIG. 2. Schematic representation of a uniform compression of surfaces are very small, reflecting large Laplace pressures
disordered cluster of droplets. In the initial stédg the droplets are  [19].
compressed t@> ¢, and are in mechanical equilibriutsurround- To capture the essential predictions for the osmotic equa-
ing droplets are not shownThe overlap of the circles is meant to tion of state of an ordered emulsion, we first consider the
indicate the degree of compression schematically, and the Centraésponse of an array of droplets to a uniform compression
force between each pair of droplets is some function of the overlapwear contact, i.e., at= ¢.. For this purpose, we introduce a

In (b), the compression has been increased uniformly. Only for &jimensionless displacemeatefined by
Hookian force will the cluster remain in mechanical equilibrium.
E=1—(¢c/ ). @)

lets are infinitesimally defor'med, the intgraction enetdy For an ordered array id dimensions uniformly compressed
between two droplets resulting from the increase of surfac%t ©>o., £is the dimensionless ratio of the perpendicular
area is[13,14 displacement of the facet toward the droplet center to the

undeformed radiufk. To obtain a rough estimate &f(¢p),

2 we make the following assumptions: the compression is as-
fR fR ) S )
U(f )/ (aAy)~ a—In , (3) sumed to be affine and the logarithmic term of K8). is
Ao Ao ignored. Thus, forp=¢., (¢— @)~ &, and hence the en-

ergy can be approximated By(¢)/(ocA,)~(¢— ¢c)?, re-
flecting a Hookian spring forcd/(oR)~ . Using Eq.(2),

o . O one finds that the osmotic pressure in the weak compression
constant. The range of validity of this expression is rather; P P

where f is the interdroplet force and is a dimensionless

narrow, just after contact, and this behavior is significantIIrnIt 'S

only at the onset of the response of ordered emulsions. In (¢)/(c/R)=Bo(¢— @), (5)
terms of interdroplet distance, to first order, this potential can

be shown(10] to be equivalent tdJ (&) ~ — £%/Iné. where both constant® and ¢. depend on the geometry of

The second regime of the droplet elastic response spartBe droplet packing. Since? varies little in the vicinity of
the much broader range of deformation that follows contacty., the dominant scaling offl is linear with respect to the
and is therefore the most important when considering thelifference ofe above packing.
response of realdisorderedl emulsions. In this regime, the Since the derivation of Eq5) relies on the assumptions
response of the droplets @harmonic with a behavior that of affinity and harmonicity, which are true for two-
can be approximated by a power law, where the power dedimensional(2D) systems but are false for reg8D) disor-
pends on the coordination numidé0,16. The anharmonic- dered emulsions, it is not surprising to realize the similarity
ity of the potential has profound consequences on the defolbetween this linear scaling form and that of Prin¢éf,12]
mations: even under a uniform compression, it implies thatvho derived it for an ordered 2D monodisperse system of
there are nonaffine particle displacements. To illustrate thisjeformable circles of constant area. When the logarithmic
consider adisorderedsystem of monodisperse spherical ob- corrections are included in the derivation Hilg) for 3D
jects interacting with repulsive forces only, and compress theystemd13], the linear form of Eq(5) is still dominant.

system uniformly at some>¢.P. If the system is in me- Equation(3) is only valid at infinitesimal compression; it
chanical equilibrium, any droplét with z neighbors will  is thus appropriate to consider a more representative i_nter-
have z; forcesf;;, j=1,... z acting on it and such that droplet potential. In fact, Eq5) can be shown to be a special

,f;;=0. Now increase the compression uniformly, which case of a more general approasiee the Appendjx if the
amounts to reducing the interdroplet distancgsbetween response of the droplets is assumed to be a power law
centers of droplet andj by a constant factok<1, as pic- U(&)~[(1—¢§) ~°~1]* [16], then the osmotic pressure
tured in Fig. 2. For a Hookian forcé; (\rj;) =\ fj;(rj;), and obeys

thus mechanical equilibrium remains after the transforma- 2 w1

tion. For any other force, the droplet must move in different (@) (o/R)~ ¢ (¢= o) . ©®)
amounts so as to achieve a new equilibrium state. Thus, evegy.e =2 for real droplets moderately compressed by six
for a rellatlvely be_nlgn case of un.|form compression, a r,‘on'neighbors, Eq(5) is somewhat recovered.

harmonic force will lead to nonaffine motion of the constitu-
ent particles. Here we implicitly assumed that the number of
contacts before and after compression is the same, an as-
sumption that is clearly not true for a disordered system. Similarly to the osmotic pressure, the static shear modulus
Thus systems with a Hookian interdroplet potential are venyG(¢) is determined by the additional deformation of the

B. Static shear modulus
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droplets away from their equilibrium shapes due to a pertursharp edges becomes very large, and that the slope of the
bative static straif31]. Princen[11] analyzed an ordered surface ared\(¢) diverges as approaches unity, regardless
(monodisperse2D array of deformable circles and showed of the emulsion’s packing structure. For 2D systems, for ex-
that G=0 for ¢<¢., and then discontinuously jumps to ample, the osmotic pressure is expected to diverge as
nearly the Laplace pressure @y, reflecting the elasticity of 11(¢)/(a/R)~(1—¢) "2 [12,34. By contrast, the static
the circles themselves. The existence of an exact solution ifheéar modulus clearly does not diverge in the same limit.
two dimensions is possible because the droplet suffacge ~ ASsuming that the emulsion can be treated as a biliquid
exactly the perimetgris parametrized by only one radius of foam, two conditions for mechanical equilibrium must be

curvature, and therefore the minimum free surface is alway{MPosed, namely, that the films meet at equal angles of 1207,
an arc of a circle. Three-dimensional problems are mucl‘?‘nd that only four edges can meet at equal tetrahedral angles.

more elaborate. However, using the potential of &y.and For a random 3D isotropic system of flat interfaces, theoret-

uniaxially straining an emulsion with a sc packing, BuzzaICaI work suggests thaB(1)/(o/R)~0.55 at ¢~1 [36].

and Cates predicted a sharp but continuous rise of thgnncens measurement8, 19| of polydisperse emulsions

uniaxial static shear modul@(«) at . [14]. This behavior dualitatively support these predictions; he reported a diver-
. TS e ) ) ence oflT andG(1)/(c/R)~0.5.
arises because of the logarithmic divergence in the dropleq (DR
response at small compression: as two droplets begin to
touch (¢=0), the effective spring constarft§ increases . . _ .
continuously but very sharplydivergent derivative from While much attention has been given to the static shear
zero to a finite value. As a result, the static shear modulugodulus, emulsions are in fact viscoelastic. Thus the shear
G of orderedemulsions does not exhibit a discontinuity at modulus is in reality a function of frequency. Moreover, in
®¢, as it would for a harmonic potential, but rather shows a2ddition to a storage, or elastic modulus, they also possess a
very sharp but continuous riga4,16]. It is not clear how- 0SS, or viscous modulus. The loss modulus is typically sig-
ever, that the characteristic onget. Eq. (3)] of the force at  Nificantly less than the storage modulus for most compressed
infinitesimal compression is determinant in thelependence  €mulsions, and, as such, has received relatively little atten-
of the static shear modulus fatisordered emulsions at tion. The effective viscositynes of a highly compressed
¢>¢.. Indeed, while a quasilinear scaling HBf similar to ~ emulsion under low frequency shear of infinitesimal ampli-
Eq. (5) was measured experimentally for polydispe(gis-  tude was predicted by Buzza, Lu, and C4tES]. Within this
ordered emulsions[19] (for which it was assumed that theory, the contribution to the viscosity due to capillary flow
©.~0.71), as well as for monodisperse emulsidis] (for of the water through the thin films between the droplets is
which g~ ¢'®®), no sharp rise i16 (¢) was observed; rather, (R/h) 5, , wheren,, is the water viscosity, and the contribu-

for both cases, a smooth increaseGff) was observed at tion from the surface dilational viscosity of the surfactant

C. Viscoelastic response

the sameyp, [8,18] monolayerxg, as more surface area is createdgig R:
Cc 1 "
At this point, we have the following picture: the theoret- R «
ical predictions for the static shear modulus afdered Vet = Mw F4-33, )

monodisperse emulsions are th@(¢) should exhibit a
sharp risgmost likely continuousat ¢, and then continue to
increase witfd®G/d¢?<0; by contrast, existing experimen- sing xz~10"2 P cm, this suggests that the dilational con-
tal data fordisorderedmonodisperse emulsiod8], which  ibution dominates Withyeg~10%7,, for micrometer-sized
are displayed in Fig. 1, show that the static shear modulugygplets withh=1 nm. Regardless of the dissipative mecha-
G(¢) increases smoothly af. (with (dG/d¢)|, ~0), fol-  nism or packing structure, this theory implies that the low-
lowed by a region of slight positive curvature frequency behavior of the loss modulus for concentrated
(d2G/d¢?>0). emulsions varies linearly with frequency &()~ 7.

To reconcile this difference, the effect of disorder and theHowever, the magnitude of the prefactor predicted theoreti-
interdroplet potential must be taken into account. The behaweally is significantly smaller than that measured experimen-
ior of G(¢) near ¢. has been investigated in simulations, tally. A possible origin for this anomalous viscous loss for
which unfortunately have been restricted to two dimensionsdisordered concentrated emulsions was suggested by Liu
with disorder introduced through polydispersifg2—35. et al.[37]. Their approach allowed for some local, randomly
These simulations find a jump of the static shear modulus alistributed weak regiongaults) within the packing having a
¢. and a negative second derivative. We shall investigateero shear modulus in one plane. By averaging over the ran-
these issues in more detail below. dom orientations of these planes, an anomalously large con-

Under strong compression, for whigh=1 and the highly tribution to the loss modulus was found, with an unusual
deformed droplets are nearly polyhedral, the use of the unfrequency dependenc&”(w)~ w2 Due to the Kramers-
deformed droplet radius to characterize the Laplace pressui&onig relations, a similar power law must contribute to
is inadequate. Instead, the Laplace pressure must be obtain€d(w). Both contributions were observed using a light-
from the curvatures at a point on the nonspherical droplescattering technique for measuring the high-frequency vis-
free interface, i.e.o(R; '+ R, 1), where theR;’s represent  coelastic moduli of emulsions8].
the local radii of curvature. One or both these radii can be- At volume fractions well belowy., emulsion droplets
come vanishingly small at the free edges and Plateau bordeesin deform only slightly during momentary collisions with
[7]. This implies that the osmotic pressure needed to removeeighbors as they undergo Brownian motion. Thus, at these
all the water to create perfectly polyhedral droplets withvolume fractions, an emulsion’s osmotic pressure and rheo-
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logical properties should resemble those of hard-sphere suas a basis for understanding the moduli of emulsions when
pensions. Since the free volume available for translatipn the droplets are not strongly compressed.

of each sphere vanishes @s- ¢, the entropic energy den-

sity, proportional to kgT/Vy, should diverge for hard . EXPERIMENT
spheres. This sets the scale 1df¢) and G’ (w,¢), which
should also diverge for hard spheres. For emulsions how- A. Methodology

ever, a divergence ap. is precluded by the possibility of  To make model monodisperse emulsions suitable for our
deformation of the droplets. Such entropic contributions arisstudy, crude polydisperse emulsions of polydimethylsiloxane
ing from the effects of excluded volume have not been inppMS) silicone oil droplets in water are fractionated using
corporated into previous theories Bf and G’ for concen- 3 procedure based on a droplet-size-dependent depletion at-
trated emulsions of colloidal droplets. Instead, these theoriegaction [6]. The surfactant is sodium dodecylsulfd@DS
have assumed that the droplets are sufficiently large that et a concentration 0€=10 mM, only slightly above the
tropic contributions to the free energy can be neglected, forceritical micelle concentration, making micelle-induced
ing IT andG' to be zero belowp. and purely interfacial in  depletion attractions negligibl], yet sufficiently large to
origin aboveyp. . A complete theory for the viscoelasticity of guarantee good interfacial stabilif$3]. Our own observa-
emulsions must account for the crossover from the entropitions with optical microscopy have confirmed that the drop-
cally dominated regime below, to the interfacially domi- |ets are stable against coalescence apaltudied. We have
nated regime above,. measured the surface tension of the SDS solution in contact
To address this behavior at a heuristic level, a model foiith silicone oil and findo=9.8 dyn/cm using a duNouy
G'(w,¢) andG"(w,¢) for concentrated emulsions neat  ring method. Our emulsions have a polydispersity that has
has been proposd@5], by analogy with a similar model for been measured to be about 10% of the radius using angle-
concentrated suspensions of hard spheres near the colloidgdpendent dynamic light scattering from a dilute emulsion
glass transition. As with hard spheres, we assume that emufl7]. Light-scattering measurements of the angle-dependent
sion droplets form a colloidal glass when concentrated to théntensity from concentrated emulsions wigh>0.6 confirm
glass transition volume fractiopg, although we allow for that the droplet structure factor resembles that of a disor-
the possibility that the deformability of the droplets may dered glass; at lowep, a liquidlike structure has been ob-
slightly alter the observed value gf; compared to that of served[7]. All measurements have been made at room tem-
hard spheres. Beloy,, on the liquid side of the glass tran- perature.
sition, MCT makes quantitative predictions for the We determine the osmotic equation of stht&p), for an
asymptotic behavior of the temporaropled density auto- emulsion havingR=0.48um by first setting the osmotic
correlation function which exhibits thg-relaxation plateau pressure to concentrate a dilute emulsion, waiting for equili-
[39]. A universal feature of MCT below is that the auto-  bration ofe, and then measuring by weighing the emulsion
correlation function of any microscopic variable coupled tobefore and after the water has been evaporated. TdIset
density fluctuations has the same generic form in thever alarge dynamic range, we use three different techniques
B-relaxation regime, and, therefore, the form for the stres$n order of decreasing compression: polymer dialysis in
autocorrelation function is predicted to be the sd@8}. The  which a hydrophilic polymer withdraws water from between
glassy contribution to the viscoelastic moduli at low frequen-the droplets thereby deforming them; centrifugation in which
cies can be obtained by Fourier transforming the stress autehe density difference between the oil and water in the pres-
correlation function into the frequency domain, while re-ence of an effective gravity is used to concentrate an initially
specting the Kramers-Kronig relations; the magnitude ofuniform dispersion of droplets into a cream; and simple
G*(w,¢) is set by the thermodynamic derivative of the creaming in the much lower gravitational field of the earth.
stress with respect to strain. Beloyy, the generic MCT In the polymer dialysis techniqué4], a dilute emulsion
form for the density autocorrelation function leads to a fre-is enclosed in a semipermeable cellulose bag and immersed
quency plateau i’ (w,¢) which reflects entirely entropic in a reservoir of strongly hydrophilic dextran solution having
energy storage, and a frequency minimum @f(w, ), a known osmotic pressure that increases with polymer con-
which reflects rearrangements of the spheres atdoand tent. The cellulose bag has a pore size which is much smaller
internal cage motion at hig. Above ¢4, the frequency than the droplet radii and radii of gyration of the polymer, so
plateau inG’ (w, ¢) persists, but the rise i6"(w,¢) toward  only water and SDS can be freely exchanged between the
low w disappears as the structural frustration associated witholymer solution and the emulsion. To prevent destabiliza-
nonergodicity prevents colloidal relaxations of the hardtion of the droplet interfaces by a loss of SDS from the
spheres. At higher frequencies, contributions to &thand  emulsion, the SDS concentration in the polymer solution is
G” proportional tow'? arise from a diffusional boundary also fixed at 10 thl. The polymer's affinity for water drives
layer between the spherp$0,41], and thee-dependent sol- water out of the emulsion, thereby raisigg The measured
vent viscosity[42] contribution toG’ proportional tow. The  volume fraction remains constant after two weeks of equili-
rheological model superposes the low-frequency MCT andration; this implies that the emulsionld has been set to
high-frequency contributions to the moduli; this implicitly that of the polymer solution. We repeat this procedure at
assumes a wide separation of time scales between each sdveral different polymer concentrations to apply different
these processes. This model has provided a successful intdi-
pretation of the measured frequency dependencies of the vis- Due to imprecision of the dialysis calibration for
coelastic moduli for hard spheres, which include a plateau ifl <10* dyn/cn?, we use centrifugation at different speeds
G’ (w) and minimum inG"(w) [25], and it may also serve to setlIl at these lower values. We centrifuge a known
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amount of dilute emulsion, and then determipdy skim- 100 , . . . . . -
ming a small amount of the creamed emulsion off the top of o ©
the column and evaporating the water. After creaming, if all ~ 109k ]
the droplets occupy a distance much less than that of the NE

centrifuge’s lever arm, the spatial gradient in the acceleration % 104 ]
g can be neglected, and the osmotic pressure at the top can &

be determinedtl = 7Apg¢;, where/ is the column height, = 103 ]
¢; is the initial volume fraction before centrifugation, afgd ~

is the density mismatch between the oil droplets and water. = 2 ]
This maximum osmotic pressure reflects the buoyant stress 10

of all droplets below the exposed layer, independent of the 10! . . . . . . .
spatial gradient inp, since the total volume of droplets is 0.6 07 0.8 0.9 1
known. For largdl, equilibration ofe typically takes several é,

hours to one day. As the speed of the centrifuge is lowered to +

obtain very smallll, the equilibration time becomes many g, 3. The osmotic equation of stabas a function of effec-
days, making centrifugation impractical. Thus, to achieve th&jve volume fraction,g, of a monodisperse emulsion having ra-
lowest I, we have allowed an emulsion to cream in thedius R=0.48 xm measured using dextran dialy$is), centrifuga-
earth’s gravity, and after an equilibration time of half a year,tion (®), and creaming in the earth’s gravitational fielsolid
we have measured of the skimmed cream. diamonds. The solid line is a fit td1(¢es) using the nearly linear
To investigate the dependence of the linear viscoelastiteak compression prediction of the single droplet model in(BJ.

moduli on the droplet size, we measu@é(w) and G"(w) for ¢.+<0.80. The effective volume fraction accounts for the thin
for four silicone oil-in-water emulsions having radii & films of water and is only slightly different than the oil volume

=0.25, 0.37, 0.53, and 0.74um using a mechanical fraction ¢ (see text
controlled-strain rheometdr5]. To setC and ¢ simulta-

neously, we first wash the purified emulsion with a SDS Some previous measurements of the elastic moduli of

solution atC=10 mM, and then we concentrate it to nearly _emuI5|ons employed a geometry in Wh'.Ch .S“p was purposely
~1 b ntrifugation. This hiah . d b induced at the walls of the cell, necessitating a complex cor-
¢ y centrifugation. s highesp is measured by oqiion for its effects to ensure that the proper moduli were

evaporation of a.sample remov.ed from this reservo_ir. Loweﬂeterminec[&g]. We follow a different procedure, and en-
¢ are set by diluting samples with a 10MnSDS solution 0 g6 that no slip whatsoever occurs along the rheometer

the total volume required by the rheometer geometry. All 15 e roughen the metal walls of the cells to a length

emulsions have been made with PDMSiscosity 7,  gcale somewhat larger than the droplet diameter this elimi-
=_12 cP, except for the_ emulsion witlR=0.53um made [ 5ies wall slig46]. We sandblasted the cone and plate, cre-
with ponphenyImethyIS|[?xanéPPMS_,7;0=235 ch. ating a roughness depth ranging from about 5 to &),

In order to measur€&™*(w, ) at high volume fractions, |5rger than the micrometer-sized droplets. We verified that
we employ a cone and plate geometry, v_vh||e =060, the measureds’(w) and G”(w) are the same for larger
we use a double-wall Couette geometry with a larger Surfac?oughnesses introduced by milling regular grooves of 100
area to increase the rheometer’s stress sensitivity. Vigorousm“or 1 mm in the surfaces. The absence of slip has also
preshearing along an applied strain can reduce the measurgden confirmed by varying the gap between the surfaces, and

stress as a result of emulsion fracturing, e_specially at lpigh_ verifying that the measured moduli do not depend on the gap
Thus our measurements are performed directly after loadingickness.

the sample. During loading, all emulsions are necessarily
presheared perpendicular to the direction of the azimuthally
applied strain as the two rheometer surfaces are moved into
position; this preshear is radial for the cone and plate geom- The osmotic equation of state for an emulsion with
etry, and axial for the double wall Couette geometry. AR=0.48 um measured using polymer dialys@pen circley
motor actuates a sinusoidal strain of amplitudet a fre-  centrifugation(solid circles, and ordinary creamingdia-
quencyw, and the magnitude of the stres@), as well as  monds is shown in Fig. 3. Neap~0.6~ ¢z ", the osmotic

its phase lag relative to the straif{w), are detected by pressure rises sharply, by several orders of magnitude, al-
a torque transducer. In the linear regime at small strains, ththough the exact nature of this rise is obscured by experi-
stress is also sinusoidal, and the storage modul@' (%) mental uncertainty in the measurementgfwhich is accu-
=[7(w)codS(w))]/y, while the loss modulus is rate to approximately 2%. Good agreement between the
G"(w)=[7(w)sin(6(w))]/y [3]. By measuring the moduli centrifugation and dialysis methods can be seef(@s con-

of an emulsion using both geometries, we verified that thdinues to rise, albeit less rapidly, well above,. Near
results are reproducible and independent of the geometrys~1, the osmotic pressure begins to rise more sharply
We enclose the emulsion with a water-filled vapor trap toagain, reflecting the resistance of the droplets against assum-
prevent any evaporation that may changethis can cause ing polyhedral shapes with small radii of curvature near their
the elasticity of the emulsion to initially grow with time as it edges. For such extreme osmotic compressions, the water
develops a skin layer having higher Standing waves in the films can rupture allowing droplets to fuse, making the emul-
gap of either geometry are negligible over the range of fresion unstable, and the onset of droplet coalescence limits the
guencies and elasticities we probe. higheste we are able to explore.

B. Experimental results
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FIG. 4. They dependence of the storag8;, (solid symbols FIG. 5. The frequency dependence of the storagg, (solid
and loss,G” (open symbolsmoduli of a monodisperse emulsion symbol$ and loss,G” (open symbolsmoduli of a monodisperse
with R~0.53.m, for effective volume fractions ap.~0.77(¢),  emulsion withR~0.53um, for ¢4=0.77(<), 0.60(A), and 0.57
0.60(A), and 0.57(0), measured ab=1 rad/s. (O). The results for the two largep.; were obtained with

v=0.005, while those for the lowest were obtained wjth 0.015.

To measureG* (w), we first establish the strain regime
where the emulsion’s stress response is linear. We set thelaxation of the glassy structure of the emulsion, while the
frequency of the applied strain te= 1 rad/s and sweep from high-frequency rise reflects the fact that the system is com-
small to large strain amplitudes to determine the extent of th@rised solely of fluids, whose viscous behavior dominates at
linear regime. The measured linearity Gf (w) is not no-  sufficiently high frequencies. In order to define an equivalent
ticeably influenced by, although its asymptotic magnitude to the static shear modulus, we define the plateau value
as y—0 may vary with w. The strain dependencies of G;,(go) of the storage shear modul@® (w,¢); this is well
G'(v,¢) andG"(y,¢) for a series of volume fractions are defined at high volume fractions, while at lower it is de-
shown in Fig. 4 foR=0.53 um andw=1 rad/s. The moduli fined by the inflection point irG’ (). In both cases, it re-
are independent of strain beloy~0.02 for the two lowest flects the overall magnitude of the static shear modulus
¢, showing that the linear regime exists only at very smallG(¢). The measured low-frequency plateau modulus in-
strains. For these low strain valugs, (y) is greater than creases over three decades from low to high
G"(y), reflecting the emulsion’s dominantly elastic nature. By contrast to the plateau behavior of the dominant stor-
At larger strains however, there is a slight but gradual dromge modulu$s’ (w), the smaller loss moduli3”(w) exhib-
in the storage modulus while the loss modulus begins to risés a minimum at frequencies close to the inflection point in
noticeably, indicating the approach to nonlinear yielding be-G’(w). The magnitude of this minimunG;.(¢), also in-
havior and plastic flow. At very large strains, beyond thecreases over three decades from lowest to highesthe
yield strain marked by the onset of the drop@i(y), we  minimum is shallow at the highesp, but becomes more
observe that the temporal stress wave form is not sinusoidapronounced at lowee.
but becomes flattened at the ped#3]. Since this response We investigate how the droplet size influen@"§(¢) by
is nonlinearG’ andG” are not strictly defined here; they are examining emulsions having radi=0.25, 0.37, 0.53, and
only apparent properties which reflect the peak stress t9.74 um. For ¢<0.52, the loss modulus dominates the stor-

strain ratio and the phase lag defined by the temporal zergge modulus, and therefo@(¢) or G(¢) cannot be de-
crossing of the stress relative to the strain. At these high

values of strain, the appare@t’ dominates the appare@t’,

10° ; : : :

reflecting the dominance of energy loss introduced by the
nonlinear flow. 5 .« .
To explore the time scales for stress relaxation, we fix a o 10 r 2.2 E ‘. :‘- R o 7
small strain amplitude which lies within the linear regime = 4 Lol 2.":'.'.5 *
whereG’ andG” are independent of, and measur&* (o) 32 10 S 3
as a function of frequency. Using this very low value of peak ] 103 . ]
strain ensures that our spectra reflect the emulsion’s true lin- &' . .
ear moduli and are not influenced by increased dissipation : 102 R :
typical at largery, in the nonlinear regime. By sweeping @) 1o =
from high to low, we obtairG' (w,¢) andG”"(w,¢); these 107> = 1
are shown in Fig. 5. At allp, we observe a low-frequency of = . ) ) )
ST g O I . 10
regime in whichG'(w) is constant or depends slightly on 05 06 07 08 09 1

frequency. At the highesp, G'(w) is essentially indepen-
dent of w. At the loweste however, a plateau is still ob-
served, but over a narrower frequency range, vt o)

9

FIG. 6. The plateau storage modumg as a function of volume

dropping at low frequencies and rising at high frequenciesfraction for monodisperse emulsions having rafi 0.25 um (@),
The low-frequency drop presumably reflects the very slow0.37 um (A), 0.53 um (M), and 0.74um (<).
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FIG. 7. The volume fraction dependence of the plateau storage
modulusG,’,(go), scaled by §/R), for four monodisperse emul-
sions having radiR=0.25um (@), 0.37 um (A), 0.53 um (M),

and 0.74um ().

fined. However, they are well defined at larggrand we plot
G‘;(cp) for different radii in Fig. 6. The plateau modulus for
each emulsion rises many orders of magnitude aroun

FIG. 8. The scaled plateau storage moduE{S(a/R) (small
solid symbolg, and the scaled minimum of the loss modulus
G,/ (o/R) (small open symbojsas a function ofpe for monodis-
perse emulsions having rad®=0.25 um (O), 0.37 um (A), 0.53

pm (), and 0.74um (). The (O) symbols are the measured

values of the scaled osmotic pressilkg o/R). The maximum film
thickness has been adjustedhg,, =175 A to give the best col-
galpse ofG/(o/R).

¢~0.60. Emulsions comprised of smaller droplets have dissured separation between the surfaces of monodisperse fer-
tinctly smaller ¢ at which the onset of the rise occurs. At rofluid emulsion droplets at the same SDS concentration
high ¢, where the droplets are strongly compress(ég,is [49], lending credence to its value. Near rcp, the film in-
larger for smaller droplets. By contrast willh, the plateau creases the volume fraction more for smaller droplets, about

modulus does not diverge gsapproaches unity.

5% for R=0.25um, and only 1% folR=0.74 xm.

To investigate the role of the interfacial deformation of
the droplets on the emulsion elasticity, we sc@lg(cp) by
(a/R), and plot the results in Fig. 7. At high, this scaling

The onset of a large elastic modulus now occurs near rcp,
at pe~¢e’, as expected. We note that this value is not a

collapses the data for different droplet sizes. However, at low 104 . : . :
¢ there are large systematic deviations from this scaling. To Oeff
reconcile these apparently different onset volume fractions, g 193] (64 ~— — ]
we must account for the electrostatic repulsion between the g
interfaces of droplets stabilized by ionic surfactants; this al- g 102l e e ]
ters theg dependences d& andIl. By using ¢ [cf. EqQ. §‘ 0.62
(1)] instead ofp, we account for the thin water films stabi- ~ 10!l ,/—-——'—“—"”'//
lizing the charges between the droplets. These thin fiims will & 0.60 3
make the apparent packing size of each droplet larger. How- c 100f 0.59 /'—/—‘:////
ever, the thickness of the film will be determined by a bal- 0.555 3
ance between the screened electrostatic forces between drop- 0.545 (a)
lets and the deformation of their interfaces. Thus the actual ' ' '
film thickness will be only weakly dependent on droplet size,
but will make a relatively larger contribution for the packing T T - T
of small droplets than for large droplets. PN Petf

The film thickness itself depends ag but in some un- E 102 °¢ e— . ]
known fashion. Thus we linearly interpolate between a maxi-
mum film thicknessh,.x, at low ¢, below rcp, where the g 0.62 '\“\.___.,-/
droplets are not deformed, and a minimum film thickness = 10!} ]
hmin, between the facets of the nearly polyhedral droplets at 3 \—/

. 0.60

¢max Near g~1. Stable Newton black films of water at a =0
similar electrolyte concentration have been observed with © 107 059 3
hmin=50 A [48]. This is comparable to the calculated Debye 0553 (b)
length A\p~30 A, for 10-mM SDS solution. Thus we as- 107! , 05 . .
sume thah,;,=50 A; this makes a larger correction for the 103 102 10! 100 10! 102
smaller droplets. To determine the maximum film thickness, o (rad/s)

we vary h,,, until the scalecGF’)(goeﬁ) for all droplet sizes

Collapse onto one universal curve. We find that the film FIG. 9. The frequency dependence(af the storage modulus,
thickness for weak compression which gives the best col6’(w), and(b) the loss modulusG”(w), for a series of effective
lapse isha =175 A, and is the same for all droplet sizes, asvolume fractions below the critical packing volume fractipp for

shown in Fig. 8. This film thickness agrees with the mea-R~0.53 um. The lines merely guide the eye.
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T T T T C. Discussion

10! k e E The measured osmotic equation of state is in good agree-
. . - - ment with the quasilinear scaling form proposed in £j.
g . This is shown in Fig. 3 by the solid line, which is a fit to Eq.
g (5), choosinga=2. With this choice, a effective critical

100 F » ] value of ¢,=0.60(2) is obtained, in reasonable agreement

§ . - with P, A similar behavior has been reported for polydis-
- perse emulsiond19], albeit with a considerably larger
. ¢.~0.72. This increase inp. suggests that polydisperse
101 - . \ . emulsions can pack more efficiently to highgg; because
0.5 0.6 0.7 0.8 0.9 1 smaller droplets can fit in the interstices of larger droplets

Peft without deforming. Neakpe~1, our data show thell be-

gins to diverge, withlI~o/R at ¢.0.9, similar to the

FIG. 10. The effective volume fraction dependence of the fre-observed behavior of polydisperse emulsiph@]. This sug-
guency where the minimum in the loss modulus occurs, for  gests thalll( ) for highly compressed emulsions is rela-
R=0.53um. tively insensitive to the polydispersity, with the average

, . . droplet size setting the characteristic Laplace pressure scale.
result of our assumption fdn(¢), but is essentially deter-

mined by the measured elastic onset of the largest emulsion Perhaps the most surprising result comes when we com-
because the 1% adjustment to jt$s very small. The excel- Pare the normalized elastic modul@'(¢)/(a/R), with

lent collapse of the data f(ﬁ, and the agreements . the normalized osmotic pressulE ¢)/(o/R). We find that

andh,,, with independent observat|ons strongly support ourhe'r magnitudes are similar over a rangeqQf above ¢,
use ofeqq to account for the electrostatic repulsion between®S Shown on a linear plot in Fig. Gy(¢) tracks the osmotic
the droplet interfaces. pressure, rising nearly linearly with. above the critical
We also plot the value of the minimum of the loss modu-Vvolume fractiong.~0.64 corresponding to rcp. The associa-
lus G”. as a function ofpe for each of the droplet sizes in tion of this rise with rcp is evidence that the macroscopic
Fig. 8 they also collapse onto a single curve, although théheology is probing the elasticity of the packing of disor-
collapse is not as good as f@). At high ¢ey, well above ~ dered droplets. The similarity betwedhe) andGy(¢) over
rcp, the elastic modulus is S|gn|f|cantly larger than the los€ large range ob is reminiscent to the critical-state theory of
modulus; however, even at loweg, where the droplets are SOil mechanics, where the resistance to shear is proportional
not deformed, the elastic modulus is still dominant, albeit byto the hydrostatic pressure with a proportionality constant
not as much. We show more details of this behavior in Figincreasing with(soil) packing density50].
9, where we plot the frequency dependence of both the stor- When the droplets are highly compressed, negi~1,
ageG’(w) and the los$"(w) moduli for a series of volume the emulsion’s elasticity resembles that of a dry foam and is
fractions forR:O_SSMm_ The p|ateau irG’ persists down determined byO'/R For a disordered monodisperse foam,
to ¢.4~0.56 after dropping three orders of magnitude fromGp(¢) is predicted to be 0.55'R [36]. As can be seen in
random close packing; moreov&” approache$’ as .  Fig. 8, we find tha’G,’J(zp) approaches 04R, in excellent
decreases. By contrast, far.4~0.55, G'(w) does not ex- agreement with this prediction. The absence of a divergence
hibit a flat plateau, but instead has a low-frequency dropofbf G,() neare4~1 indicates that volume preserving shear
which appears within our measurable frequency range, whileoes not cause the local radii of curvature at the droplet’s
G"(w) begins to dominate at low frequencies. Measurementedges and Plateau borders to vanish; instead, the shear
at lower ¢ are precluded by the stress sensitivity of ourmerely stretches the interfaces. By contrast, the meadiired
rheometer. does exhibit a pronounced increase in slope¢as ap-
The frequency where the minimum in the loss modulusproaches unity. This supports its predicted divergence due to
occurs,wy,, indicates roughly where the contributions from the vanishing radii of curvature as water is squeezed out,
the high- and low-frequency relaxations in the emulsion aralthough an extensive test of the predicted power law,
equal. Its behavior is plotted as a functiongfy in Fig. 10  ITI~(1—¢) %2 is precluded by droplet coalescence.
for the emulsion havingR=0.53um. Evident is a pro- The existence of a well-defined minimum @' (w) (cf.
nounced dip from w,~0.5rad/s near ¢+=0.57 to Fig. 5 at high¢ contrasts with the monotonic rise found for
w,~0.1 rad/s neakp.=0.59, and there is a rapid subse- a foam[51]. The minimum reflects viscous relaxations at
guent rise to nearly a constant value @f,~10 rad/s at both high and low frequencies. The high-frequency rise in
higher ¢ Above this cusp, the frequency of the minimum G”(w) presumably reflects the increasing importance of the
becomes relatively insensitive to volume fraction, saturatingnolecular solvent viscosity, while the low-frequency rise re-
at higherggg. flects glasslike configurational rearrangements of the colloi-
We have repeated measurements of the frequency spectadgl droplets. As the droplets become more highly concen-
plateau moduli, and minimum in the loss moduli as a func-trated with increasingpes;, they cannot rearrange as easily,
tion of ¢ for monodisperse emulsions having a range of oilso this relaxation is pushed to very low frequencies, permit-
viscosities: ,~12, 235, and 1070 cP. In no case did weting the existence of a dominant plateau elasticity. This pla-
observe significant changes in either the magnitudes or frdeau inG'(w) and the corresponding minimum 8" (w)
guency dependencies & andG”. have been corroborated by recent dynamic light-scattering
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measurements of the viscoelastic moduli of concentratedhinima in the loss modulus with volume fraction and droplet
emulsiong52]. size.

The measured frequency dependencie$s6fw, ) and The independence of our results on the internal viscosity
G"(w, ) for emulsions belowp,. (see Fig. 9resemble those of the droplets reflects the domination of the surface tension
of glassy hard-sphere suspensions at sinilg25]. For hard-  in the deformation of the droplets at our observation frequen-
sphere suspensiong,is the thermodynamic variable which cies. To estimate the frequency above which this viscosity
plays the role of temperature in a normal liquid-glass transinay be important, we compare the Laplace pressure with
tion; as it is raised near the glass-transition volume fractionth® maximum internal viscous stress possible during
@4~0.58, a dominant frequency plate@i(w) and a mini- shear, 7,yo~0o/R. Solving for the frequency, we find
mum in G”(w) have also been observed. These features ar@™~(07R)/(7,7). For unity strain amplitudey =10 dyn/cm,
the consequences of the glassy relaxation of the droplet co@'d R=1 um droplets, the frequency for Our most viscous
figurations, and the rheological behavior can be describedP!€tS (70~1000 cP) would bew~10" s™%, well above

using a model based on MQP5]. This model also accounts Ol.Jtrh rangebof miphanl(r:]alt :neobmﬁter_. T_h|s_ grgumsnt agfrees
for the frequency plateaG’(w) and minimum inG”"(w). with our observations that the behavior Is independent

This similarity to hard spheres is reasonable, since the dro At low frequencies, although it suggests that the spectra at

. . . . 'either higher frequencies or for emulsions with much larger
lets are spherical at thege Viscosity measurements for di- g q g

. internal viscosities may be influenced Iy .
lute ¢ at the same surfactant concentration have shown that

the surface elasticity of the surfactant prevents coupling of
flows outside the droplets to their interi@3]. Above ¢4, a
hard-sphere suspension loses its low-frequency relaxation A. Model and method
and become nonergodic. This implies an ideal zero-
frequency elastic modulus in the rheological modw drop

in G’ nor rise inG"(w) toward loww]. However, our emul-
sion data do show evidence of a low-frequency relaxatio

IV. NUMERICAL STUDIES

The difference between the theoretical predictions for the
¢ dependence of the static shear mod@usf ordered emul-
r]sions and the experimental data f@lé,((p) leaves us with

even for volume fractions well abowg, where the droplets several unanswered qugstlons. The effects of dls_order, the
ﬁxact form of the potential, the existence of nonaffine relax-

are highly compressed. This is reflected by the increase if’. . . . . S
G"(w) asw decreases. This difference suggests that the de"’}t'on processes all must t_)e |nv_est|gated in detail. Existing
formability of the droplets allows a persistent relaxation forreSUItS prpwded by 2D simulations are not of great rel-
emulsions even above,, unlike hard spheres. evance, since most of these effects depend strongly on the

: . 90 . . underlying dimensionality.
Assuming that this minimum frequency is proportional to . .
the p-scaling frequency in simple mode-coupling theory, The exact deformation of a single droplet under compres-

which is expected to show a dipusp at the glass transition sion ha§ been studi¢de] \.Nith the help of Brakke’s softwgrg
volume fractior(23], we can identifye,~0.59 for our emul- [54], which triangulategdiscretizeg the surfaces to be mini-
sion from Fia. 10 :I'his is similar t¢g~0'58 measured for mized under a given set of constraints. This procedure is
hard-spheregs.usp.ensio[lm 25 Thequg obéervations are evi- V€Y intensive computationally; thus only relatively small

; e ; systems can be studied using this apprdddf. The results
dence that emulsions first become solids although : . .
their elastic moduli are entropic in origin ﬁtd weak %Om_obtamed for the compression of a single droplet, however,

) . . rovide valuable physical insights on the increase of the
E)Dare_?_htg rrizgdil:llIGgE)arBIrli:/\elgr;%ow(;fé?qtugre\::(i)(;rsnz[l;%r\]/ea?r?gegmplEt surface upon compression. Moreover, the knowledge
c-

lass transition is indicative of structural relaxations that er—Of the response potential obtained for an individual droplet
9 o . Pe:an in turn be used in a more coarse-grained model which
sist above ¢4; it may be possible to account for

. . - n represent more dropl nd thus incl he eff f
wn~10 rad/s at these volume fractions by using a modifie an represent more droplets and thus include the effects o

MCT, which can account for additional relaxation due to the isorder.

bility of th v induced def i fthe droplet A natural candidate for such a coarse-grained model is to
possibiiity ot thermatly induced detormations O, € dropie S‘represent a collection dfl droplets byN pointlike particles
It is surprising that the ¢/R) scaling for G,(¢) also

confined in a “bulk” system obtained by imposing periodic
produces a reasonable collapse of the dataGfyt¢) (see  poundary conditions. The resulting system has a reduced
Fig. 8), since this scaling is based on an elastic mechanisriymper of 3 degrees of freedom. While the total interfacial
asgomated with energy storage, not dissipation. This obsekeg of arN-droplet emulsion is essentially a function dfi3
vation suggests that the Laplace pressure also sets the scglgiaples, to a good approximation, the interfacial area of an

for_th_e loss r_nodulus_, just as it does for the storage modulugdividual droplet can be described by a function of only the
This is consistent with a proposed model for the loss moduregpective positions of all its interacting neighbors. A much
lus[37]. As with G (¢), the magnitude o6 (¢) increases  cryder approximation, which should be valid at very small
dramatically neat; where the droplets begin to pack. In the compression, consists in approximating the droplet's poten-
dry foam limit, pcr—1, Gp(¢) approaches %10 °¢/R, tial by a sum of two-body interactions and neglecting higher-
about two decades lower théﬂ,(@). Since the minimum in  order terms. While high-order interactions are necessary to
G"(w) cannot be described by the viscosity of Ef).alone, account for volume conservation effects such as the diver-
a meaningful comparison with this theoretical model of dis-gence of the osmotic pressure at highit is not clear how
sipation is not possible. Instead, our observations suggeshportant they are for moderately compressed emulsions.
that the the Kramers-Kronig relations connecti@f(w) to In an extensive numerical stud$6] of the response of a

G’'(w) may lead to an understanding of the scaling of thesingle droplet to compression by various Wigner-Seitz cells,
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it was shown that, for moderately compressed emulsions, th 0.018 =
interaction potential can be approximated by a power law, 0016

U(f):k’(Tsza, (8) _ 0.014

x 0012
wherek’ is some constant is defined as in Eq4), anda is < 0010
a power larger than 2. The striking point of this study is that & 0.008 f
high-order terms are important since it was demonstrate = 0006 | *° o7 07 o050 082 oss
thate andk’ depend on the number of interacting neighbors. 0.004 | ¢
A better fit over a wider range of the data was obtained by 0.002 |
0.000 . :
U(&)=koR?[(1—¢)3—1]7, 9 0.00 0.01 0.02 0.03 0.04

g

which has the advantage of being reducible to terms in _ ) _ _ _
(¢— @) for ordered structures. For the sake of comparison, FIG. 11. Two interaction potentials for a maximum displace-

we shall use both potentials in the present study, witHnent corresponding te=0.84. The corresponding static shear
K’ =3%. modulus of a fcc lattice undergoing a uniaxial strain is shown in the

inset. Dashed curves are for E®) while solid curves are for Eq.

In order to reconcile computational tractability and the
9). Curves are for, top to bottonyy=2.0, 2.1, 2.2, 2.3, 2.4, and

inclusion of three-body and higher interactions, we use th
following approach for studying disordered structures: we ™
construct disordered systems of hypothetical soft spheres that
interact through a two-body, short-range, central-force repulwhereR is the undeformed soft sphere radius, and half
sive pairwise potential represented by a power [@ther the distance between the centers of two interacting spheres
Eg. (8) or (9)] with a form (coefficient and exponende-  (r<<R). By dealing with ordered structures, the shear defor-
pending on the average coordination number of the systenmation always leads to the equilibriugaffine) configuration
While still mean field in nature, this potential is a definite of the system, and, thus, the notion of “center of the drop-
improvement over simple two-body interaction potentials.let” still has a meaning.
Moreover, the anharmonicity of this potential implies that A springlike potential only takes into account two-body
the system will deform nonaffinely, and this model enablegnteractions, and thus cannot capture the effects of volume
us to measure these effects directly. conservation. It is instructive, however, to see how sensitive
Under pairwise repulsive potentials, the particles can béhe shear modulus of ordered structures is to the form of the
thought of as soft compressible spheres, pushing one anothgetential assumed by our hypothetical soft spheres. Figure 11
and deforming when their separating distance is smaller thagompares both potentials of E¢8) and(9), with a ranging
the sum of their undeformed radii. The total energy of thefrom 2.0 to 2.5(k=1 has been kept constant in order to
system is the sum of all the energy involved in the interact-spread the curvésin the inset, the static shear modulus of a
ing pairs. The osmotic pressure is obtained from the viriaffcc lattice of hypothetical soft spheres interacting through
[55]. these potentials and undergoing a uniaxial shear deformation
With the help of this model, we can study the factorsis presented for the same values @f Numerical surface
influencing thep dependence of the static shear modulys calculations of the shape of a single droplet uniformly and
and thus account for our experimental data. For this purposénoderately compressed in a fcc lattice have shown that the
we separately investigate the effects of disorder, and thexcess surface energy per contact can be fit by(#qwith
form of the interaction potential on the elastic response.

3.5
B. Numerical results and discussion
30t
1. Ordered systems
It is instructive first to investigate the behavior of regular >
structures of compressible spheres responding to compre % 20}
sion with the repulsive potentials introduced in E(®.and < sl
(9). Since ordered structures can be described by a singl © -
node, these problems can be solved analytically and, her S
the elastic properties of ordered systems are derived for un
form compressions and uniaxial shear deformations. The de

formations are always applied along the principal axes of the : : . '
usual representative unit cells. The details of the calculation 0.54 0.8 (P0'62 0.66 0.70
are presented in the Appendix.

For all structures, we define the displacement gpgner-

.. FIG. 12. The static sh lus of latti i
alizing Eq. (4)] G e static shear modulus of an sc lattice undergoing a

uniaxial deformation. The dashed curve are for B), while the
solid curves are for Eq9). Curves are forw=2.0, 2.1, 2.2, 2.3,
E=1-r/R, (10 2.4, and 2.5, from top to bottom.
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an exponentr=2.4[16]. The static shear modulus shown in 25 g
this figure for «=2.4 compares very well with the true
uniaxial shear modulus as obtained from numerical calcula 20
tions of a single droplet uniaxially sheared in a fcc lattice
[16]. 15 |8
For anharmonic potential§.e., a>2), G exhibits two %
characteristic features: a sharp onset @ so that = 018
((9G/(9<p)|qpc diverges, followed by a region where
9°Gldp?<0. This is in contrast with experimental data ob- 05 |9
tained for disordered emulsions, showing a vanishing first
derivative atp., followed by an increase of positive curva- 0.0 I
ture. For harmonic potentialsxE& 2), G exhibits a disconti- 1.0 1.5 2.0 2.5 30 35 40
nuity at ¢, [see the analytical form in Eq§A4) and (A6)]. v (units of D)
Figure 12 shows the same quantities for a sc lattice. Note 45.0
that for moderate compressions, the true response of a dro| 40.0 |
let in a sc lattice has an exponent close to 2.2. The statis 35.0
shear modulus obtained from our hypothetical soft sphere: 30.0 I
interacting with Eq.(9) (and «=2.2) compares very well 50 :l'z
with the true estimate dB, as obtained from numerical sur- &
face calculationg16] or from an expansion at small com- 200 Y
pression14]. 15.0
For a bcc structure, the lattice is unstable under a uniaxia 10.0
shear along one of its principal axes as such a strain defot 5.0
mation gradually transforms a bcc lattice into an fcc lattice, 0.0 :
thus continuously decreasing its energy. 085 090 095 1.00  1.05 .10 115

One can also compute the value of the modulus for simple 7 (units of D)

shear strains, as applied along the principal platees.,
[100]). The corresponding values & are only positive for FIG. 13. The radial distribution function of N=4913 hypo-
fcc and bcc lattices, since a sc lattice is unstable with respedhetical soft-sphere system. (a), the distance has been rescaled by
to this deformation. Calculations of for simple shear the compression factar=(e./¢)". In (b), the details ofy(r) are
strains give results similar to those obtained for uniaxial deshown near=D. The curves are for 18 different volume fractions
formations, and will therefore not be presented here. ranging frome=0.66 to 0.85 in steps of 0.01.
Although a pairwise-potential model can only include ra-
dial compressive forces, we demonstrated that it can never- The initial configurations are prepared at a volume frac-
theless reproduce the qualitative features of the shear moddiPn ¢; by randomly selecting the coordinates of the deform-
of ordered structures, in particular teedependence ob. able droplets and then relaxing the system by slowly increas-
The calculations of the osmotic pressure are the same fdRg the potential to its desired value. We find that we must
all lattice structures, and are presented in the Appendix. I§hoose¢;= ¢’ to avoid the slow relaxation observed at
the vicinity of ¢=¢., both potentials show the same scal-random close packing. The systems are tlieniformly)
ing, i.e., compressed and relaxed in small increments. The relaxation
is done by minimizing the energy through a conjugate-
Kz o w1 gradient algorithn{56] modified to ensure convergence to
/(a/R)~ < {(_> - 1} ’ (11)  the closest minimum. At the end of each relaxation, the en-
Pc ergy is computed as well as the coordination number and the
osmotic pressure. The system is compressed this way until it
where z, is the coordination number, aral, is a lattice reachesp~0.85, at which value the procedure is reversed,
specific constantsee the Appendix The osmotic pressure and the shear modulus is computed at each value &

thus contrasts with G, having a smooth rise decreased. _ -
(311/d¢)|, ~0) at ¢ To investigate the behavior of the packing, in Fig(a3

we plot the radial distribution functiog(r) of a system of
4913 soft spheres as it is uniformly compressed. The dis-
tances are measured in diametBr) (units, and are rescaled
In order to investigate the effects of disorder on the sheaby the factorv=(¢./¢)¥*<1. Note how all the curves col-
modulus, we numerically study disordered systembldfy-  lapse for large’, showing that there are no large scale rear-
pothetical soft spheres interacting through the same potemangements: contact effects dominate. The radial distribution
tials Egs.(8) and (9). The systems are cubic and have peri-exhibits the two characteristic peaks of random close pack-
odic boundary condition§PBC’s), with N ranging from ings as discussed by Bernd@7] and Finney[58]: the first
1000 to 4913. Smaller systems were also studied, but besne atr~1.79 is related to different local geometries,
cause of the combined effects of the softness of the potentiavhile the second one is related to colineation of spheres as
and PBC's, these systems have a tendency to order spontspported by the sharp drop at2.0D (representing an
neously in fcc at higfosmotig pressure. angle 7w between three osculatory sphereshese colinea-

cell

2. Disordered systems
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FIG. 14. The probability distribution of the coordination number . .
for the N= 4913 hypothetical soft sphere system. The curves are fits FIG. 15. The static shear modulus of a disordered system un-

to Gaussian distributions. The system is uniformly compressed aqergomg a uniaxial deformation. The potential is as E).with
the volume fractions indicated in the graph. a=2 (top) and 2.5(bottom). The symbols represef@ (one for a

uniaxial strain in each spatial directjowhile the solid lines repre-
tions, however, are affected by compression, as can be se&fntll. (Dotted lines merely guide the eye
from the broadening of the peak: this broadening is due to

aligned(angle ofw) osculatory triplets that stay aligned and ment of AN=10"* is an optimal value. For most cases, a
stretched even after compression. This is one indication thghaximum strain ofy=0.002 is sufficient to obtain good nu-
the relaxation is nonaffine. merical data while minimizing the computation: our results

Figure 13b) Sho‘fés an expanded view of the contact peak yemonstrate that with this value, we are in the linear, pertur-
It is sharp ate=¢;" and then broadens as the system ispqtive regime.

compressed, showing that a wide range of intéracting con-  Frigyre 15 shows the shear modulus and the osmotic pres-
tacts is taking place. The sharp cusp aiD found at mod- gy of a disordered system di=3375 hypothetical soft

gratenp .ShOWS. thhat somef sEh.eres.cEm stil “ﬁscape” ;rorznspheres interacting with a potential of the form of E§)
llvntetractl(i(nstW;tDsome 0 tt elr r;]elg bor‘s. -[te ;t)art f?' theith fixed values ofe=2.0 and 2.5. For both sets of curves,
Irst peak atr represents spneres about fo fouch. any, . usek=1, so that the amplitude is arbitrary and the two

Il i ill bring th i hus i - :
small compression will bring these in contact, thus increas ets should not be directly compared. For2, G andII

ing the coordination number. This presence of such almost . ;
osculatory neighbors is also present in packings of har ave different slopes at the onset, while ter2.5 the wo

spheres, making the evaluation of the coordination humbefUrves are much closer. The qurvatchC(S/dzgp) is slightly
rather difficult, and leading to an overestimate in most casefegative for Eq(9) anda= 2. Simulations of systems of soft
[59]. For soft compressible sphere systems, these “almostspheres interacting with with Eq8) and «=2 (ie., a
neighbors play an important role in the elastic response. Thistraight harmonic potentiahave a negative curvature that is
effect is better seen from Fig. 14, which shows the probabileven more pronounced. The results for E®). and «=2.5
ity distribution of the coordination number for different uni- definitely show a positive curvature at the onset, similar to
form compressions. This plot exhibits some interesting feathe one observed experimentally. We thus see that the form
tures of disordered systems. The absence of any node havi9g the potential has an effect on the qualitative response of
z.=12 at low compression is striking, showing that rcp hasthe shear modulus of disordered emulsions.
short-range order which favors smaller coordination num- For droplets in ordered lattices, the response to compres-
bers. The curves are well described by a Gaussian, althougtion depends on the number of neighbors, with an exponent
there seems to be some systematic skewness at the tails. Tthat varies approximately linearly from~2.0 atz.=6 (for
mean coordination number increases as the system is corf¢) to @~2.4 atz.= 12 (for fcc), when fitting surface calcu-
pressed, while its distribution appears to be narrower. For alations results to Eq(9) [16]. In view of determining the
emulsion, the increase of the coordination number plays aglastic response of disordered systems as precisely as pos-
important role for two reasons: it increases the number osible, we use the following scheme for the potential: we use
contacts, and it changes the response of the individual drog=d. (9) with an exponent that varies according to
lets. The first effect is captured by the present model, whilex=2+0.4(z.—6)/6, and a coefficierk(z;) obtained from a
the second can be taken care of by modifying the interactiogubic interpolation scheme between the values obtained for
potential as the coordination number changes. ordered lattice$16]. For a system & =1000 soft spheres,
The static shear modulu3(¢) is obtained by gradually we obtain the curve shown in Fig. 1, where the static shear
applying a uniaxial strain in small step increments, relaxingmodulus and the osmotic pressure are compared with the
the system (always using the same conjugate-gradientexperimental values of the scaled plateau mod@y6e.s)
method at each small shear increment. The size of the sheaandIl(¢.). For a large range of, the agreement between
increments has been tested for reliability: the same resulthhe measurements and simulation results is excellent both in
are obtained after halving its value, showing that we are in anagnitude and overall shape. Such good agreement would
regime whereG does not depend on the value of the sheamot have been obtained without the realistic droplet potential
strain step increment. We determined that a shear step incrand the disordered droplet structure inherent in the model.
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These features of the simulation suggest that the resenfror undeformed droplets below,, there is a strong simi-
blance betweerG(¢) and II(¢) found experimentally for larity between the emulsion'sw-dependent viscoelastic
emulsions may be fortuitous, resulting from the combinedmoduli and those of disordered hard spheres, indicating the
effects of disorder and the particular response of the dropldmportance of entropy and the influence of the colloidal
to compression which can be obtained from purely geometriphase behavior and glass transition on concentrated emulsion
arguments. However, it may be possible that other heterogeheology.
neous dispersions of repulsive elements which interact This study of the rheology for repulsive monodisperse
through more general anharmonic potentials than @§. droplets provides a foundation for comparison with future
may also exhibit the same similarity betwe&{¢) and studies which consider the role of interdroplet attractions and
I1(¢). Unfortunately, our present knowledge of statistical ge-polydispersity. In the case of attractive emulsions, which
ometry is not sufficient to either support or rule out such amay form very tenuous solid aggregates or gels of droplets at
conjecture. ¢ much less tharp., the simplicity of our interpretation of

the rheology in terms of familiar packings such as rcp may
be precluded. In fact, the thermodynamic concept of an os-
V. CONCLUSION motic pressure of attractive droplets at dilg¢tenay be com-

Our measurements clearly demonstrate the similarity bePletely different, since the aggregate may not be able to re-
tween the longitudinall(g), which maintains the static de- Versibly re-expand once it has been compressed. Likewise,
formation of the droplets, and the transve@gp) for mono- the simple packing interpretation we have used_ in this study
disperse emulsions having a disordered, glassy structure. THa2y become much more complicated for polydisperse emul-
monodispersity has enabled us to interpret the strong riseons. However, by contrast to the past approaches, the ef-
from the entropic to the Laplace scale in terms of packings of€cts of polydispersity can now be precisely studied by com-
monodisperse spheres. In addition, it has allowed us t§ining different monodisperse emulsions to generate
meaningfully compare the measurements with a threesystematically controllable size distributions. We anticipate
dimensional model that incorporates both a realistic dropIeTihat the results of both of these studies will lead to important
repulsive potential and a disordered droplet positional strucf€W results.
ture. The excellent agreement of the simulation based on this
model with the experimental results confirm that the origin ACKNOWLEDGMENTS

of this similarity lies in these two essential features. .

This central result provides a first insight into the elastic-C We .thang Shlgmg AI(aExgntlj_'er,bIDIaﬁl _Cha|k'g\n,d HerT.an
ity of disordered packings of identical repulsive elements “”.‘g"'&s' Ou_?_ ur\l/?/_n, ne derDo z elvmver,. nf rea Lid,
forced together under an applied osmotic pressure. By Coes_t‘i’jxluIatinogrsotlai’scu(')srsr}onslttaennoi sungges(taiglr?s Vsslraere %rrartr;?&y o
trast to conventional homogeneous solids, in which th > ' .
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pressure itself, not the osmotic modulus of compression, ma§

be closer in magnitude to the shear modulus. This similarity

may hold for other materials besides emulsions. For instance, APPENDIX CALCULATION OF G AND II

our results should be directly applicable to foams comprised FOR ORDERED LATTICES

of gas bubbles, and they may also provide a guide to the

;Ir?gorilljfﬁ:m?jlg?\cgsia;gfgezntrl?rzzdmn(;:jcerlogvﬂ Es\%ﬂ?n- lus _of a fcc lattice of springlike droplets under a u_niaxial
e . strain. To represent the fcc lattice, we choose a unit cell of

troduced may even provide realistic predictions for their ) : :
G(e) andIl(¢), provided an average response of a bead Oeggtor;:.de connected to its neighbors by the following 12

vesicle to deformation can be calculated.
Despite the success of our model for describing the static 2r'(0,+1,+1)V2
elastic modulus and osmotic pressure of compressed emul- T '
sions, it cannot predict the fulb dependence of the vis-
coelastic moduli, since it does not consider dissipative
mechanisms. The exact nature of the slow glassy relaxation ,
of the disordered droplet structure, indicated by the rise in 2r'(£1,£1,0/v2,
G"(w) toward smallw, remains obscure fop>¢,, espe- , . )
cially when the droplets are strongly deformed well aboveVherer’ depends on the amount of uniform cormpression,
@c. In addition to dissipative mechanisms, entropic contri—W,h'Ch is imposed through a factow=(¢c/¢)""<1:
butions toG’ (¢, ®) andG"(¢,w) must likewise be included ' = vR, whereR is the e_quwalent of the undeforr_ne_d droplet
asTI falls well below the Laplace pressure scale, before gadius; more correctly in the present context, it is half the
meaningful comparison with the experimental data can b&nge ofmtergctlon of our springlike potential. In the p.resent
made fore<¢.. There, the frequency dependence of theCase.¢c= ¢’ is understood although we ugg to simplify
viscoelastic moduli exhibits the characteristic rheologicalthe notation. This potential is taken to be
features of a colloidal glass: a plateau@n(w), a minimum R
;

For the sake of demonstration, we derive the shear modu-

2r'(£1,021)/v2, (A1)

3
-1

a

in G"(w), and a frequency associated with minimamg(¢) U(r)=koR? (A2)

which exhibits a cusp at the glass transition volume fraction.
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for r<R, and zero otherwise, ankl is some constant we K'a ol=o3
define as unity. In order to determine the effect of the expo- Gl(0/R) = —— —— (¢"¥— 92
nenta on the shear modulu, we impose a uniaxial strain 16v2 (oc)
i II: th irection i h f
on our unit cell: thez direction is stretched by a factor X[(a+6)((pc)l/3—7<pl/3]. (A6)

A =1+ €, while the perpendiculaty plane is compressed by
a factor ~Y2. The volume of our unit cell is unchanged by o ) .
this transformation and remain$/2°R3. Applying a uni- A similar procedure is used for determining the shear modu-

form compression and a uniaxial shear to the vectors of EqUs G of other types of strains and lattices.
(A1), the excess energy densityof our model is The calculation of the osmotic pressure is independent of

the lattice structure, since a uniform compression yields the
-3 “« equilibrium configuration. The osmotic pressure is obtained
1 (at e=0) from the energy density by

k v
- 3 N N2 17
u(\,v)/(a/R) o v [2 ( (N9

v2
v 1172 co Il u (A7)
+||— - - =¢ ——u.
" (2N77) 1 (A3) (2 Jo
The shear modulus is obtained for smalllexpanding to g Eq.(A5), one finds
second order usingu(e, ) —u(0,¢) = (3/2)G(¢) €> [63],
’ 2/3 1/31a—1
%ka ¢ am2 T1/(/R) = a2 (i) {1—(% } A8
GlelltalR)= 162 g2t (¢=¢c)® Tola=2)Focl. (7/R) 6ace | ¢c ¢ A9
(A4)
_ _ . wherez, and ¢, depend on the lattice aral=8, 32/3?,
One can also define a simpler potential and 22 for sc, bee, and fec, respectively.
(e For potential Eq(A2), one finds a similar form, namely,
U(r)=k’'oR? -7l (A5)
az, @> -
which is a simple harmonic spring when=2. In this case, H/(o/R)= 2au F(‘P_ ®c) (A9)
Cc

we usek’ =3“k in order to perform a direct comparison with

Eq. (A2). For the same uniaxial strain, the shear modulus of

a fcc system of deformable spheres interacting with such &lote that for a disordered structure the coordination number
potential is found to be z.(¢) depends on the volume fraction.
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